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Abstract 

Dynamic Relaxation (DR) method is presented for the analysis of geometrically linear 

laterally loaded, rectangular laminated plates. The analysis uses the Mindlin plate theory 

which accounts for transverse shear deformations. A computer program has been compiled. 

The convergence and accuracy of the DR solutions of isotropic, orthotropic, and laminated 

plates for elastic small deflection response are established by comparison with different exact 

and approximate solutions. The present Dynamic Relaxation (DR) method shows a good 

agreement with other analytical and numerical methods used in the verification scheme. 

It was found that: The convergence and accuracy of the DR solution is dependent on 

several factors which include boundary conditions, mesh size and type, fictitious densities, 

damping coefficients, time increment and applied load. Also, the DR small deflection 

program using uniform meshes can be employed in the analysis of different thicknesses for 

isotropic, orthotropic or laminated plates under uniform loads in a fairly good accuracy. 

 

Keywords: Dynamic Relaxation (DR) method, Dynamic Relaxation Solution, Verification 
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1. Introduction 

There are many situations in engineering applications where no single material will be 

suitable to meet a particular design requirement. However, two materials in combination may 

possess the desired properties and provide a feasible solution to the materials selection 

problem. A composite can be defined as a material that is composed of two or more distinct 

phases. It is usually a reinforced material that supported in a compatible matrix, assembled in 

prescribed amounts to give specific physical, mechanical and chemical properties. 

Many composites used today are at the leading edge of materials technology, with their 

performance and cost appropriate to overwhelming applications such as that in space 

industries. Nevertheless, heterogeneous materials combining the best aspect of dissimilar 

constituents have been used by nature for millions of years ago. Ancient societies, imitating 

nature, used this approach as well: The book of exodus explains the usage of straw to 

reinforce mud in brick making without which the bricks would have almost no strength. Here 

in Sudan, the population from ancient ages dated back to Meroe civilization, and up to now 

used zibala (i.e., animal dung) mixed with mud as a strong building material. 

Composites possess two desirable features: the first one is their high strength to weight 

ratio, and the second is their properties that can be tailored through the variation of the fiber 

orientation and the stacking sequence which give the designer a wide choice of a suitable 

composite material. The incorporation of high strength, high modulus and low density fibers 

in a low strength and a low modulus matrix material result in a structural composite material 
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which owns a high strength to weight ratio. Thus, the potential of a composite structure for 

use in aerospace, under – water, and automotive applications has stimulated considerable 

research activities in the theoretical prediction of the behavior of these materials. Usually a 

composite structure consists of many layers bonded on top of one another to form a high 

strength and rigid laminated composite plate. Each lamina is fiber reinforced along a single 

direction, with adjacent layers usually having different fiber orientations. For these reasons, 

composites are continuing to replace other materials used in structures such as steels, 

Aluminum alloys… etc. In fact composites are classified as the potential structural materials 

of the future as their cost continues to decrease due to the continuous improvements in 

production techniques and expanding rate of sales. 

Three – dimensional theories of laminated plates in which each layer is treated as 

homogeneous anisotropic medium (Reddy [1]) are intractable as the number of layers 

becomes moderately large. Thus, Reddy [1] concluded that a simple two dimensional theory 

of plates that accurately describes the global behavior of laminated plates seems to be a 

compromise between accuracy and ease of analysis. Numerical results obtained using refined 

finite element analysis (D.J. vuksanovic [2], and [3]) and their comparison with exact three 

dimensional analysis pointed out that the higher order theory provides results which are 

accurate and acceptable for all ranges of thickness and modular ratio. 

Putcha and Reddy [4] classified the two dimensional analyses of laminated composite 

plates into two categories: (1) the classical lamination theory, and (2) shear deformation 

theories (including first and higher order theories). In both theories the laminates are assumed 

in a state of plane stress, the individual lamina is linearly elastic, and there is perfect bonding 

between layers. The classical laminated plate theory (CLPT), which is an extension of the 

classical plate theory (CPT) applied to laminated plates was the first theory formulated for the 

analysis of laminated plates by Reissner and Stavsky [5] in 1961, in which they utilized the 

Kirchhoff – love assumption that normals to the middle surface before deformation remain 

straight and normal to the middle surface after deformation, but it is not adequate for the 

flexural analysis of moderately thick laminates. However, it gives reasonably accurate results 

for many engineering problems specially those related to thin composite plates, as proved by 

Srinivas and Rao [6], Reissner and Stavsky [5], Hui – Shen Shen [7], and Ji – Fan He, and 

Shuang – Wang Zheng [8]. This theory ignores the transverse shear stress components and 

models a laminate as an equivalent single layer. The high values of modular ratios classify 

classical laminate theory as inadequate for the analysis of composite plates as verified by 

Turvey and Osman [9-11], Reddy [1], Pagano [12], and Taner Timarci and Metin Aydogdu 

[13]. 

The theory used in the present work comes under the class of displacement based theories 

which are classified according to Phan and Reddy [14]. In this theory, which is called first 

order shear deformation theory (FSDT), the transverse planes, which are originally normal 

and straight to the middle plane of the plate, are assumed to remain straight but not 

necessarily normal after deformation, and consequently shear correction factors are employed 

in this theory to adjust the transverse shear stress, which is constant through thickness. 

Numerous studies involving the application of the first order theory to bending and buckling 

analyses can be found in the works of Reddy [15], Reddy and Chao [16] Prabhu Madabhusi – 

Raman and Julio F. Davalo [17], and J. Wang, K.M. Liew, M.J. Tan, S. Rajendran [18]. 

 

2. Small Deflection Theory 

The equilibrium, strain, constitutive equations and boundary conditions are introduced 

below without derivation. 
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2.1. Equilibrium Equations 
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2.2. Strain Equations 

The small deflection strains of the mid – plane of the plate are as given below: 
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2.3. The Constitutive Equations 

The laminate constitutive equations can be represented in the following form: 
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x
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 and N
x y

and M
i

 denotes M x , M y and M x y . A ij  , B ij  

and D ij  ,  , 1, 2 , 6i j   are respectively the membrane rigidities, coupling rigidities and flexural 

rigidities of the plate. 
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and are calculated as follows: 
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Where c
i j

 are the stiffness of a lamina referred to the plate principal axes and K
i
 , K

j
 

are the shear correction factors. 
 

2.4. Boundary Conditions 

All of the analyses described in this paper have been undertaken assuming the plates to be 

subjected to identical support conditions in the flexural and extensional senses along all 

edges. The three sets of edge conditions used here are designated as SS1, SS2 and SS3 and 

are shown in Figure (1) below. 
 

 

Figure 1. Simply Supported Boundary Conditions 

3. Dynamic Relaxation Solution of the Plate Equations 

In the present work, a numerical method known as Dynamic Relaxation (DR) coupled with 

finite differences is used. The DR method was first proposed in 1960s and then passed 

through a series of studies to verify its validity by Turvey and Osman Refs. [9, 10] and [11] 

and Rushton [19], Cassel and Hobbs [20], and Day [21]. In this method, the equations of 

equilibrium are converted to dynamic equations by adding damping and inertia terms. These 

are then expressed in finite difference form and the solution is obtained through iterations.  

Numerical techniques other than the DR include finite element method, which is widely 

used in several studies i.e., of Damodar R. Ambur et al., [22], ying Qing Huang et al., [23], 

Onsy L. Roufaeil et al., [3]… etc. In a comparison between the DR and the finite element 

method, Aalami [24] found that the computer time required for finite element method is eight 

times greater than for DR analysis, whereas the storage capacity for finite element analysis is 

ten times or more than that for DR analysis. This fact is supported by Putcha and Reddy [4] 

who they noted that some of the finite element formulation requires large storage capacity and 

computer time. Hence due to less computations and computer time involved in the present 

study, the DR method is considered more suitable than the finite element method. 
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The plate equations are written in dimensionless forms. Damping and inertia terms are 

added to Eqation. (1). Then the following approximations are introduced for the velocity and 

acceleration terms:  
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In equations. (4) and (5) the superscripts (a) and (b) refer respectively to the values 

of velocities after and before the time step t , and 1* 1

2
k k t  


 . The displacements at 

the end of each time increment, t , are evaluated using the following simple integration 

procedure: 
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The complete equation system is represented by eqns. (5), (6),(2) and (3). The DR 

algorithm operates on these equations is as follows: 
Step 1: set initial conditions (usually all variables are zero). 

Step 2: compute velocities from equation (5). 

Step 3: compute displacements from equation (6). 

Step 4: Apply displacement boundary conditions. 

Step 5: compute strains from equation (2). 

Step 6: compute stress resultants, etc from equation (3). 

Step 7: Apply stress resultants … etc, boundary conditions. 
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Step 8: check if velocities are acceptably small (say < 10-6). 

Step 9: If Step 8 is satisfied print out results, otherwise repeat steps. (2 to 8). 
 

4. Verification of the Dynamic Relaxation (DR) method 

The present DR results are compared with similar results generated by other DR and / or 

alternative techniques including approximate analytical and exact solutions so as to validate 

the DR program. In the following discussion a wide range of small deflections are dealt with 

including isotropic, orthotropic, and laminated plates subjected to static uniformly distributed 

loading scheme. 

Table (1) shows the variations in the central deflections of a moderately thick isotropic 

plate  / 0 .1h a   with simply supported condition (SS1). These results suggest that a 5 5   mesh 

over one quarter of the plate is quite enough for the present work (i.e., less than 0.3% error 

compared to the finest mesh available). In table (2) the comparison of the present DR 

deflections and stresses with that generated by Turvey and Osman [9] and Reddy [25] is 

presented for a uniformly loaded plate of thin  . . / 0 .0 1i e h a  , moderately thick
 . . / 0 .1i e h a 

, 

and thick laminates  . . / 0 .2i e h a   using simply supported condition (SS1). The present DR 

results of central deflections and stresses showed good agreement with the other results even 

though the plate is square or rectangle. Another comparison analysis for small deformations 

of thin and moderately thick square simply supported isotropic plates (SS1) between the 

present DR method, and Roufaeil [26] two and three node strip method is shown in table (3). 

Again, these results provide further confirmation that a DR analysis based on a 5 5 quarter – 

plate mesh produces results of acceptable accuracy. 

In the following analyses, several orthotropic materials were employed; their properties are 

given in table (4). Exact FSDT solutions are available for plates simply supported on all four 

edges (SS2). By imposing only a small load on the plate, the DR program may be made to 

simulate these small deflections. In table (5), the computations were made for uniform loads 

and for thickness / side ratios ranging from 0.2 to 0.01 of square simply supported in – plane 

free plates made of material I with  1 .0q  . In this case the central deflections of the present 

DR method are close to those of Turvey and Osman [10], and Reddy [25]. Another small 

deflection analysis is shown on table (6), and it was made for uniformly loaded plates with 

simply supported in – plane fixed condition (SS1) of material II and subjected to uniform 

loading  1 .0q  . In this analysis, the four sets of results are the same for the central 

deflections and stresses at the upper and lower surfaces of the plate and also the same for the 

mid – plane stresses. Nevertheless, the exact solution of Srinivas and Rao [6] is not in a good 

agreement with the others as far as stresses are concerned. These differences may be 

attributed to the exact solution theory adopted in Ref. [6]. 

Most of the published literature on laminated plates are devoted to linear analysis and in 

particular to the development of higher order shear deformation theories. Comparatively, 

there are few studies on the nonlinear behavior of laminated plates and even fewer are those 

which include shear deformations. The elastic properties of the material used in the analyses 

are given in table (4). The shear correction factors are  2 2 5 / 6
54

k k    , unless otherwise 

stated. 

In table (7) which shows a comparison between the present DR method and finite element 

results of Ref. [6] for a simply supported condition (SS3) plate. There are four antisymmetric 

angle ply laminates of material III which are subjected to a small uniform load  1 .0q  . The 

central deflections and stresses are recorded for different thickness ratios including thick, 
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moderately thick, and thin laminates. These results are compared with Reddy’s finite element 

results [6] and are found in a good agreement despite the different theory adopted in the latter 

case. 

Another comparison analysis of central deflections between the present DR method, 

Zenkour et al., [27] using third order shear deformation theory and Librescu and Khdeir [28] 

which are made of material IV are illustrated in table (8). The three results showed a good 

agreement especially as the length to thickness ratio increases. 

Table 1. DR Solution Convergence Results for a Simply Supported (SS1) 
Square Plate Subjected to Uniform Pressure 1 .0 , / 0 .1q h a   and v= 0.3  

Mesh size 
c

w
 

2 2  0.04437 

3 3  0.04592 

4 4  0.04601 

5 5  0.04627 

6 6  0.04629 

7 7  0.04638 

8 8  0.04640 

Table 2. Comparison of Present DR, Turvey and Osman [1], and Exact Values 
of Reddy [25] Small Deflection Results for Uniformly Loaded Simply Supported 
(SS1) Square and Rectangular Plates of Various Thickness Ratios 1 .0q   , 

v= 0.3 

/a b  /h a  s

 
w c   1x   1y   2x y   3x z   4y z  

1 

0.20 

1 

2 

3 

0.0529 

0.0529 

0.0536 

0.2879 

0.2879 

0.2873 

0.2879 

0.2879 

0.2873 

- 0.2035 

- 0.2035 

- 0.1946 

0.3983 

0.3984 

0.3928 

0.3983 

0.3984 

0.3928 

0.10 

1 

2 

3 

0.0463 

0.0463 

0.0467 

0.2866 

0.2865 

0.2873 

0.2866 

0.2865 

0.2873 

- 0.2038 

- 0.2038 

- 0.1946 

0.3983 

0.3990 

0.3928 

0.3960 

0.3990 

0.3928 

0.01 

1 

2 

3 

0.0440 

0.0441 

0.0444 

0.2853 

0.2860 

0.2873 

0.2853 

0.2860 

0.2873 

- 0.2033 

- 0.2039 

- 0.1946 

0.3960 

0.3990 

0.3928 

0.3960 

0.3990 

0.3928 

2 

0.20 

1 

2 

3 

0.1204 

0.1216 

0.1248 

0.2825 

0.2840 

0.2779 

0.6165 

0.6225 

0.6100 

- 0.2952 

- 0.2829 

- 0.2769 

0.4230 

0.4341 

0.4192 

0.5400 

0.5410 

0.5451 

0.10 

1 

2 

3 

0.1111 

0.1122 

0.1142 

0.2819 

0.2838 

0.2779 

0.6148 

0.6209 

0.6100 

- 0.2964 

- 0.2843 

- 0.2769 

0.4200 

0.4358 

0.4192 

0.5412 

0.5447 

0.5451 

0.01 

1 

2 

3 

0.1080 

0.1109 

0.1106 

0.2823 

0.2842 

0.2779 

0.6141 

0.6212 

0.6100 

- 0.2970 

- 0.2857 

- 0.2769 

0.4200 

0.4377 

0.4192 

0.5400 

0.5472 

0.5451 

 

S (1): present DR results 

S (2): DR results of Ref. [9] 

S (3): Exact results of Ref. [25] 
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Table 3. Dimensionless Central Deflection of a Square Simply Supported 
Isotropic Plate (SS1) 

 2
1 .0 , 0 .3 , 0 .0 .8 3 3q v k    

/a h  Present DR Results 3 – node strip Ref. [31] 2 – node strip 

Ref. [31] 

100 0.00403 0.00406 0.00406 

10 0.00424 0.00427 0.00426 

Table 4. Material Properties used in the Orthotropic and Laminated Plate 
Comparison Analysis 

 

Material 

/
1 2

E E  /
1 2 2

G E  /
1 3 2

G E  /
2 3 2

G E  
1 2

   
2 2

54
S C F k k

 

I 25.0 0.5 0.5 0.2 0.25 5/6 

II 1.904 0.558 0.339 0.566 0.44 5/6 

III 40.0 0.5 0.5 0.5 0.25 5/6 

IV 12.308 0.526 0.526 0.335 0.24 5/6 

Table 5. Comparison of Present DR, Turvey and Osman [10], and Ref [25] 
Center Deflections of a Simply Supported (SS2) Square Orthotropic Plate Made 
of Material I for Different Thickness Ratios when Subjected to Uniform Loading 

 1 .0q   

Thickness 

ratio /h a  

Uniform Loading 

 w D Rc
 

present 

 w D Rc
 

Ref. [4] 

 w exactc
 

Ref. [2] 

0.2 0.017914 0.017912 0.018159 

0.1 0.009444 0.009441 0.009519 

0.08 0.008393 0.008385 0.008442 

0.05 0.007245 0.007230 0.007262 

0.02 0.006617 0.006602 0.006620 

0.01 0.006512 0.006512 0.006528 

Table 6. Comparison of Present DR, Ref. [10], Ref. [25], and Exact Solutions 
Ref [6] for a Uniformly Loaded Simply Supported (SS1) Orthotropic Plate Made 

of Material II when Subjected to Uniform Loading  0.1q  

b/a h/a s w c   1x   2x z  

1 

0.05 

1 

2 

3 

4 

0.0306 

0.0306 

0.0308 

0.0308 

0.3563 

0.3562 

0. 3598 

0.3608 

0.4387 

0.4410 

0.4351 

0.5437 

0.10 
1 

2 

0.0323 

0.0323 

0.3533 

0.3534 

0.4393 

0.4395 
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3 

4 

0.0326 

0.0325 

0.3562 

0.3602 

0.4338 

0.5341 

0.14 

1 

2 

3 

4 

0.0344 

0.0344 

0.0347 

0.0346 

0.3498 

0.3498 

0.3516 

0.3596 

0.4367 

0.4374 

0.5328 

0.5223 

2 

0.05 

1 

2 

3 

4 

0.0629 

0.0629 

0.0636 

0.0636 

0.6569 

0.6568 

0.6550 

0.6567 

0.6506 

0.5637 

0.5600 

0.7024 

0.10 

1 

2 

3 

4 

0.0657 

0.0657 

0.0665 

0.0664 

0.6566 

0.6566 

0.6538 

0.6598 

0.5623 

0.5628 

0.5599 

0.6927 

0.14 

1 

2 

3 

4 

0.0692 

0.0692 

0.0703 

0.0701 

0.6564 

0.6564 

0.6521 

0.6637 

0.5613 

0.5613 

0.5597 

0.6829 

 

S (1): present DR results 

S (2): DR results of Ref [10] 

S (3): Finite element solution Ref [25] 

S (4): Exact solution Ref [6] 

Table 7. Comparison of Present DR, and Reddy Finite Element Results Ref. [15] 

for  

45/45/45/45   Simply Supported (SS3) Square Laminate Made of 

Material III and Subjected to Uniform Loads and for Different Thickness Ratios 









 0.1q  

h/a s  3
1 0w c    1x  

0.20 
1 

2 

9.0809 

9.0000 

0.2022 

0.1951 

0.10 
1 

2 

4.3769 

4.2000 

0.2062 

0.1949 

0.05 
1 

2 

3.2007 

3.0000 

0.2081 

0.1938 

0.04 
1 

2 

3.0574 

2.9000 

0.2090 

0.1933 

0.02 
1 

2 

2.8371 

2.8000 

0.2063 

0.1912 

 

S (1): present DR results.  

S (2): Reddy [15] as read from graph.  1 1
,

2 2
x y a z h    
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Table 8. Non – Dimensionalized Deflections in Three Layers Cross – ply 

0 / 9 0 / 0 
 

  Simply Supported (SS1) Square Laminates of Material IV Under 

Uniform Load  1 .0q   

a/h s  
w c  

2 

1 

2 

3 

0.0693 

0.0726 

0.0716 

5 

1 

2 

3 

0.0224 

0.0232 

0.0235 

11 

1 

2 

3 

0.0147 

0.0150 

0.0151 

21 

1 

2 

3 

0.0127 

0.0128 

0.0128 

 

S (1): present DR results linear analysis 

S (2): Librescu L and Khdeir A.A [28] 

S (3): A.M. Zenkour, and M.E.Fares [27] results. 

 

5. Conclusions 

A Dynamic relaxation (DR) program based on finite differences has been developed for 

small deflection analysis of rectangular laminated plates using first order shear deformation 

theory (FSDT). The displacements are assumed linear through the thickness of the plate. A 

series of new results for uniformly loaded thin, moderately thick, and thick plates with simply 

supported edges have been presented. Finally a series of numerical comparisons have been 

undertaken to demonstrate the accuracy of the DR program. These comparisons show the 

following:- 

1. The convergence of the DR solution depends on several factors including boundary 

conditions, mesh size, fictitious densities and load. 

2. The type of mesh used (i.e., uniform or graded mesh) may be responsible for the 

considerable differences in the mid – side and corner stress resultants. 

3. For simply supported (SS1) edge conditions, all the comparison results confirmed that 

deflection depends on the direction of the applied load or the arrangement of the layers. 

4. The DR small deflection program using uniform finite difference meshes can be employed 

with less accuracy in the analysis of moderately thick and flat isotropic, orthotropic or 

laminated plates under uniform loads. 

5. Time increment is a very important factor for speeding convergence and controlling 

numerical computations. When the increment is too small, the convergence becomes 

tediously slow, and when it is too large, the solution becomes unstable. The proper time 

increment in the present study is taken as 0.8 for all boundary conditions. 

6. The optimum damping coefficient is that which produces critical motion. When the 

damping coefficients are large, the motion is over – damped and the convergence becomes 
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very slow. And when the coefficients are small, the motion is under – damped and can cause 

numerical instability. Therefore, the damping coefficients must be selected carefully to 

eliminate under – damping and over – damping. 

7. Finer meshes reduce the discretization errors, but increase the round – off errors due to the 

large number of calculations involved. 
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