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1.I. Introduction

Mechanics: is a branch of the physical science that is concerned with the state of rest or motion
of bodies that are subjected to the action of force. Objects of interest in sport biomechanics are
human body and sport equipment. According to the nature of studied objects mechanics is divided

into several branches (Figure 1).

I ) 1 1
Relativistic Quantum Rigid body Deformable : :
L -
-I-

Figure 1. Branches of mechanics divided according to the nature of studied objects, and the
division of rigid body mechanics

Static Mechanics

Statics is a branch of engineering mechanics that deals with the analysis of forces and interactions
of bodies in equilibrium.

Dynamic Mechanics

Dynamic is concerned with the accelerated motion of bodies under effects of external forces.
Fatigue Mechanics
Fatigue is a failure mechanism that involves the cracking of materials and structural components

due to cyclic (or fluctuating) stress.
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|.2. Composition of Forces

The process of finding out the resultant force of a number of given forces is called the

composition/compounding of forces.
|. Parallelogram Law

If two forces acting simultaneously on a particle is represented in magnitude and direction by two
adjacent sides of a parallelogram, their resultant may be represented in magnitude and direction

by the diagonal of the parallelogram which passes through the point of intersection, (fiqure 2).

F,
Fs
/ /R
. f'EI; ‘EL-:
- F, o

Figure 2. Parallelogram Law

The resultant of a pair of concurrent forces can be determined by the following equation:

Resultant,R = \/F% + F5 — 2F F,cos0

F? sin®
a =tan"! < 2 )

F% + F5 cos@
2. Triangle Law

Additionally, this equation can be used to determine the direction of the resultant or the unknown

forces, (figure 3):

I
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Fs

Figure 3. Triangle Law

R F, F
sin® sinB  sina

|.3. Resolution of a Force

The process of substituting a force by its components so that the net effect on the body remains

the same is known as resolution of a force.
For each force, there exists an infinite number of possible sets of components.
Suppose a force is to be resolved into two components.

Then:

[. - When one of the components is known, the second component can be obtained by applying

the triangle rule.

2. When the line of action of each component is known, the magnitude and the sense of the

components are obtained by parallelogram law.
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|.4. Principle of Resolution

The algebraic sum of the resolved parts of a number of forces in the given direction is equal to the

resolved part of their resultant in the same direction.

Replace a single force with its components through the process of resolution.

It a force (F) lies in the plane (x-y). The force (F) may be resolved into two rectangular
components. The component of a force parallel to the x-axis is called the Horizontal component
(Fy). and parallel to y-axis the is called Vertical component ().

As an illustration of the following force analysis on two axes , (figure 4):

Figure 4. Force analysis on two axes

F,
ing = =~
Sin F

. Fy
& Fy=Fsm0&cost9=F < F, =FcosO

R = /sz + F?

tanf = & 0 =tan’! <—y)

el
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1.9. Resultant of Force Systems
Resultant: Simplest force system which have same external effect of the original system.
1.9.1. Resultant of Coplanar Concurrent Force System

In x-y plane, the resultant of coplanar concurrent force system where the lines of action of all
forces pass through a comman point can be found by the following formulas:

Rx:sz —-»* Y

F, Fy
Ry = Fix — Fox — F3x + Fyx 82N 6. .
6;‘ B4
R,= ) B # Bfl P
Ry =F1y+F2y_F3y—F4y
R = foz + R,*
R/ R
R - —
6, = tan™ (R_z) R,

I
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1.6. Solve examples

Example - 1

Calculate the magnitude and direction of resultant vector that is formed when taking the sum of the
six forces shown below?

Sign Convention

E + ve
' —ve + ve
750 N ! - ve
Solution:
First Method
XF, = F;.(cos30°) — F,.(sin 20°) — F5. (cos 60°) + F,. (cos 35°)
XF, = 200 x 0.866 — 150 x 0.342 — 750 x 0.5 + 500 x 0.819
=173.2—-51.3—-375+409.5 =156.4 N
IFy = F;.(sin30%) + F,. (cos 20°) — F3.(sin 60°) — F,. (sin 35°)
LF, = 200 % 0.5 + 150 X 0.94 — 750 X 0.866 + 500 X 0.574
=100 + 141 — 649.5 — 287 = —695.5 N
Second Method
M Description YF, ZF,
) )
1. 200 LL30° 200 cos30° = 173.21 200sin30° = 100
2. 150 L110° 150 cos 110° = —51.3 150sin110° = 140.95
3. 750 L240° 750 cos 240° = —375 750 sin 240° = —649.52
4, 500 LL325° 500 cos 325° = 409.58 500sin 325° = —286.79
Sum 156.49 -695.34
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R= |FZ+ EFZ = /156.42 + 695.52 = 712.87 N

695.5

F
— tan-1{2Y) — tan-1
0 = tan ( ) tan (156.4

=77.33°
3 )

Example - 2

Calculate the magnitude and direction of resultant vector that is formed when taking the sum of the
three forces act on point A, shown below?

Solution:
Draw free body diagram all forces, as the following.

10
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First Method

From the figure:

E

0.2
a = tan™! (—y) = tan™?! (—) = 26.565°

F, 0.4

4
2F, =F,.(cos35°) — F,. (g) + F;.sin 26.565°

2F, =600 x0.819 — 500 x 0.8 + 800 x 0.447
=491.4 —-400+ 375.6 =449 N

3
XF, = F;.(sin35°) + F,. (g) — F3.c0526.565°

2F, =600 x 0.574 + 500 x 0.6 — 800 x 0.894

= 3444+ 300 —-7152=-70.8N

Second Method
/11 Description XF, ZF,
) )
1. 600 L35° 600 cos 352 = 491.49 600 sin 35°% = 344.4

2. 500 L143.13°

500 cos 143.13° = —400

5005sin 143.13° = 300

3. 800 L296.565°

800 cos 296.565° = 357.77

8005sin 296.565° = —715.2

Sum

449.26

-70.8

R= |ZF%+ ZF2 =,/4492 + (—74.8)2 = 455.188 N

0 =

F —-70
tan~1 (—y) = tan~! (—
F 449

X

>= 8.96°

L
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Example - 3

Calculate the magnitude and direction of resultant vector that is formed when taking the sum of the
two forces act on point A, shown below?

150 N

Solution:

150 N

The Parallelogram method
adds a vector's tail
to the head of the other
vector to create Fr

100N 5 100N

> Fr (resultant vector)
150 N is what we want to calculate
(magnitude and angle)

15" 100 N 6 = ‘Oe- ls's 65‘

Resultant,R = \]Flz + F? — 2F,F,cosa

R =+/100% + 1502 — 2 X 100 X 150 X cos 115° = 212.55 N

12
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From Sine Rule

R F F

sin@ sinB  sina

212.55 B 150
sin115  sin@

L 150sin115
212.55

@ = sin” = sin~1(0.64) = 39.79°

Example - 4

Calculate the magnitude of a force (F). also magnitude and direction of resultant vector that is

formed when taking the sum of the two shown below?

Solution:
From Sine Rule

R F
sin@  sinf  sina

e
sin 60° sin 45°
| F =245 N
A
o =0 200,
F sin 75° sin 45°

13
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Example - 5
|t F, = 30 N and FZ = 40 N, determine the angles u and f so that the resultant force is directed
along the positive x axis and has a magnitude of Fp = BO N.

v

Solution:

Parallelogram Law. The parallelogram law of addition is shown in Fig. a.
Trigonometry. Applying the law of cosine by referring to Fig. b,

407 = 30% + 60% —2(30)(60) cos @
0 = 36.34° = 36.3°
And
302 = 407 + 607 —2(40)(60) cos ¢
¢ = 26.38° = 264°

14
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1.7. Chapter Questions

. If the magnitude of the resultant force is to be (9 KN) directed along the positive x - axis.

determine the magnitude of force (T) acting on the eyebalt and its angle.

I

I

8 kN

{Results:T = 6.57 KN ; 6 = 30.6 ; ® = 75.6}

2. It is required that the resultant force acting on the eyebolt in Figure be directed along the
positive axis and that (F2) have a minimum magnitude. Determine this magnitude. the angle

(8), and the corresponding resultant force.

{Results: T =657 KN ; 6 =90 }

3. If (6 =307) and (T = 6 KN) , determine the magnitude of the resultant force acting on

the eyebolt and its direction measured clockwise from the positive x axis.

15
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i

;{ll‘lil,%i

8 kN

{Results: Fx = 8.67 KN ;& = 63.05 ; @ = 3.05}

4. Determine the magnitude of the resultant force acting on the bracket and its direction

measured counterclockwise from the positive u axis.

F>,=1501b
v 2

u

F;=2001b

{Results: Fr = 217 N ; @ = 63.05 ; @ = 3.05}

0. [f(F, = 600 N)and (¢ = 30°), determine the magnitude of the resultant force acting on

the eyebolt and its direction measured clockwise from the positive x axis

3 F=500N
F3=450N

{Results: Fr = 701.91 N ;0 = 44.06 }

L]
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B. The force (F = 450 N) acts on the frame. Resolve this force into components acting along
members AB and AC , and determine the magnitude of each component.

A /__.\)“

il )

“q

{Results: Fyg = 86 N ; Fyc = 636 N }

7. If the tension in the cable is 400 N, determine the magnitude and direction of the resultant

force acting on the pulley. This angle is the same angle of line AB on the tailboard block.

400N

\(3()"—"

\

— X
ey 400 N

{Results: R = 400 N ; 0 = 60°}

17
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Moment of a Forces
and
Moment of a couples



2.1 Introduction

In the previous chapter, we have been discussing the effects of forces, acting on a body, through
their lines of action or at the point of their intersection. But in this chapter, we shall discuss the
effects of these forces, at some other point, away from the point of intersection or their lines of
action

2.2. Moment of a Force

Moment is ability of the force to produce twisting or turning a body about an axis.

beam turns force (F)
ph.m\cluckw 15€

(- |

- : >
‘/’ distance (d)

M=F-d

Where:
M: The moment of the force (N.m).
F: Applied force (N).
d: is the perpendicular distance from the axis moment
to the line of action of the force (m).
Units: kN.m,N.m,N.mm
Sign Convention:

Note: Always taking clockwise as positive moment.

Or. Emad Toma Karash
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2.3. Principle of moments

The moment of a force with respect to any axis (or point) is equal to the algebraic sum of the

moments of its components with respect to the same axis.
M = YF -d
Where:

|s the moment arm, which is the perpendicular distance from the axis of rotation to the line of

action of the force.
M = F.r.sin

(d)

(a)

Jx -
a
==
(‘) &
M
X

2.3.1. Moment's Direction

20
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2.3.2. Varignon's Theorem

One of the most useful principles of mechanics is Varignon's theorem, which states that the
moment of a force about any point is equal to the sum of the moments of the components of the

force about the same point .

MA=F-d
MA - Fx.dl + Fy.dz

2.4, Solve examples

Example - |
Determine the moment of the force (F) in Figure below about points (A), (C) . (D) and (0) ?

2]

F=1000 N
3

0

: —1 I- 10 mm
- 1
\.(‘ 10 mm
J i
\-.,
A ~D
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Solution

600 N
/

" N I 10 mm

k

21 X -
0 A °
N

(@] +MA == Fl'dl - Fz.dz
U +My, =—-600x%x 60+ 800x40 =-4000 N.mm = 4000 N.mm O

(@] +MC == Fl'dl - Fz.dz
O +M, = -600 x 30 + 800 X 4000 = 18000 N.mm U

(@] +MD = Fl'dl - Fz.dz
O +Mp, = —-600 x 60 + 800 X 80 = 28000 N.mm U

(@] +MO = Fl'dl - Fz.dz
O +My=-600x%x60+0=-36000 N.mm = 36000 N.mm O

Example - 2
Determine the magnitude and sense of the moment of the (F = 800 N) force about point (A)?
800 N

0.6m

05m

Solution
O+My =F x0.6—-F x05
= (800 cos 38°) x 0.5 — (800 sin 38°) x 0.6
M, = 378.25 —246.26 = 131.99 N.m

“ M, =13199N.m U

Or. Emad Toma Karash
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Example - 3
Given that (T =28.3 KN) and (W =25 KN), determine the magnitude and sense of the moments
about point (B) of the following: (a) the force T: (b) the force W; and (c) forces T and W

combined?
36 m
3@
Bv
/! 20m ! 16 m

Solution

TSIN 45° B

4') 20 mm I 16 mm ]

8.7 or - l

W 5 s 450 ] lﬁs .

(@).For . U +Mpz = —20 (28.3 cos45%) = —400 = 400 KN.mm O
(b). For W: © +Mp = —25 (16) = —400 = 400 KN.mm U
(c).For TEW. L X Mz =400 —-400=0

2.3. Moment of a Couple

A couple is defined as two parallel forces with the same magnitude but opposite in direction
separated by a perpendicular distance (d).

I
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F M
| £

/

0, &

F

The moment of a couple is defined as:

(Using a scalar analysis) or as.

My =r1.F
(Using a vector analysis). Here r is any position vector from the line of action of -F to the line
of action of F.
The net external effect of a couple is that the net force equals zero and the magnitude of the
net moment equals (F . d) Since the moment of a couple depends only on the distance between
the forces, the moment of a couple is a free vector. It can be moved anywhere on the body and
have the same external effect on the body. Moments due to couples can be added using the
same rules as adding any vectors.

Two couples act on the beam. One couple is formed by the forces at A and B, and other by the
forces at C and D. If the resultant couple is zero, determine the magnitudes of P and F, and the
distance d between A and B.

Example - 4

Two couples act on the beam. One couple is formed by the forces at A and B, and other by the
forces at C and D. If the resultant couple is zero, determine the magnitudes of P and F, and the
distance d between A and B.

SOON

F 300 N

Or. Emad Toma Karash
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Solution

Free Body Diagram (F. B. D) of the figure.

500 N

DT>
3

C| j&—

s P
Iy
60° /A B
307
F 300N

Since these are couples we must

have:
F=300N
P=500N

The resultant coupe is:
M =+500 * 2 -300* d cos 30°=0
Thusd=3.85m

Examples - 5

Determine the resultant moment of the three couples acting on the plate?

—— 100 kN
3m
—I5 100 kN
200 kN —>|
2m
200 kN~
A
2m
¥
- -
A 4m
50 kN 50 kN

Solution
O+M=XF.d=200%x2—-—100%*3—-50%x4 =—100 KN.m

= 100 KN.m O Anticlockwise
S —

Or. Emad Toma Karash
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Example - B

Determine the resultant moment with respect to point (0)?

Solution

Meoupie = F +d = 200 x 1 = 200 N.m G

C—'\'M,,:ZF-d

S00N
750 N
200N
O Y ‘[
Y 5] Im
1.25m——125m—
200 N
750N
0 l
E‘Y\Ll.zs m—+—1.25 m —[

3 4
MO=750x1.25+500x§x1—500><§><2.5—200

M, =375N.m /)

2.b. Force - Couple Systems

According to the principle of transmissibility, the force can be moved to any point along its line

of action, as it produces the same effect on the body. However, if we want to move the force to

a point not lying on its line of action, it must generate a couple such that it produces the same

effect as the force. This is known as forcecouple system. The replacement of a force into a

force and a couple is explain in Figure below, where the given force F acting at point A is

replaced by an equal force F at point B and the counterclockwise couple M = Fd.

/_-
\

F

\A.],/'

7 F
\{ F/ de/
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Example - 7
Replace the horizontal (B0 N) force acting on the lever by an equivalent system consisting of a

force at (0) and a couple.

Solution

80N SON

: /
M, = 80 x (9 sin 60)
C 4
M, = 624 N.m SON son SON‘/

624 N.m

Example - 8
For the compression member shown in the figure, replace the force (P = 200 N) by an

equivalent axial load and a couple.

K{_‘P =200N

mm

Solution
Moupie = F +d = 200 x 2 = 400 N.mm()

2 |P=200N P=200N
_Y. 400 N.mm
¥

s ]
Goidssssl
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2.7. Chapter Questions

[. A 400N force is applied to the frame and © = 20°. as in the following figure. Find the
moment of the force at A7

{Answer: Mg = 1160 N.m}

. The wrench shown is used to turn drilling pipe. If a torque (moment) of (800 N.m) about point
(p) is needed to turn the pipe, determine the required force (F).

30°

6 cmT

{Answer: F = 239 N}

2. Calculate the moment about the base point (0) of the (600 N)?

2 m

;

A

e

600 N

%

{Answer: M, = 2610 N.m}

Or. Emad Toma Karash
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3. Determine the resultant moment acting on the beam?

400N 400N
A
A J 200N
- [U.E m
' ‘ ~ 200N
im | 2 m—
y
300N 300N

{Answer: Mcoypre = 740 N.m U}

4. Determine the magnitude of (F), so that the resultant moment acting on the beam is (.o kN.m)

¥
09m

| L
Al 2kN

clockwise.”

{Answer: F = 2.333 KN}

0. Determine the resultant moment of the three forces and one couple which act on the plate
shown about point (0)7

{Answer:: My = 237279 N.m U}

B. Find the equivalent force couple system about point A for the set of forces shown
below?

50N —-—{_) 100 Nm
N

60 N

L |

1.5m 4‘

{Answer:: My = 115 N.m O}

Or. Emad Toma Karash
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Equilibrium



3.1. Equilibrium

When all the sums of the forces of the system in certain directions and the sum of moments of the
forces with respect to certain axes are zero for any particular force system, its resultant is zero,
and the body on which the system acts is in equilibrium. The conditions assuring equilibrium of a
body with a particular type of force system can therefore be expressed as a set of algebraic
equations which must be satisfied. By means of these conditions, it is possible to determine one or
more unknown forces or reactions acting on a body which is in equilibrium.

3.2. Free body Diagrams

|s a sketch of a body, a portion of a body, or two or more bodies completely isolated or free from
all other bodies, showing the forces exerted by all other bodies on the one being considered.

Procedure for drawing a free body diagram

|. Draw outlined shape
Imagine the particle to be isolated or cut (free) from its surroundings by drawing its
outlined shape.

2. Show all forces
Indicate on this sketch all the forces that acts on the particle. These forces can be active
forces, which tend to set the particle in motion. Or they can be reactive forces which are
the result of the constraints or support that tend to prevent mation,

The forces that are known should be labeled with their proper magnitudes and directions. Letters
are used to represent the magnitudes and directions of forces that are unknown.

L]
Or. Emad Toma Karash
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Note

All cables will be assumed to have negligible weight and they cannot stretch. Also, a cable can

support only a tension or pulling force and this force always acts in the direction of the cable.

MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS

Type of Contact and Force Origin

Action on Body to Be Isolated

chain, or rope

Weight of cable

1. Flexible cable, belt,
[ --'-—'--'--Z

neghigible +__--_ kl
Weight of cable L
not negligible +_ o -

Foree exerted by

a flexible cable 1s
always a tension away
from the body in the
direction of the cable.

2. Smooth surfaces

\R

Contact foree 15
compressive and 1s
normal to the surface.

3. Rough surfaces

N

&
e = :
T
T
e
"1.,‘
e,
e,
N}l -
F
}/
/ -
R 7 e
o
N

Rough surfaces are
capable of supporting
a tangential compo-
nent F {frictional
force) as well as a
normal component

N of the resultant
contact force K.

i

. Roller support

o
©ge

Roller, rocker, or ball
support transmits a
compressive force
normal to the

N ‘
? supporting surface.
N
. Freely slidin ide
¥ £ Bu Collar or slider free to
. move along smooth
. guides; can support
- force normal to guide
only.
N N

32
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MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS (cont.)

Type of Contact and Force Crigin

Action on Body to Be Isolated

6. Pin connection

Pin free to turn

A freely hinged pin
connection 1s capable
& of supporting a foree
(" in any direction in the
plane normal to the
pin axis. We may
either show two
components K and
R, or a magnitude &
and direction & A pin
not free to turn also
supports a couple M.

7. Built-in or fixed support
A A

or

e Weld

A built-in or fixed
support 15 capable of
supporting an axial
force F, a transverse
force V ishear force},
and a couple M
(bending moment) to
prevent rotation.

8. Gravitational attraction

i

The resultant of
gravitational
attraction on all
7 elements of a body of
mass m 15 the weight
W = mg and acts
tovward the center of
the earth through the

center mass (7.

9, Spring action

Linear MNonlinear

Neutral F
position .
| F o by | Hardening

. | I
k|—'| | o
}wwv—-ef | ﬁe.ﬁnﬁ

Spring force 15 tensile
if spring is stretched
and compressive if
compressed. For a
linearly elastic spring

the stiffness k is the

Y-

force required to
deform the spring a
unit distance.

33
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Examples of Free Body Diagrams

SAMPLE FREE-BODY DIAGRAMS

Mechanical System

Free-Body Diagram of Isolated Body

1. Plane truss

Weight of truss
assumed negligible
compared with P

2 Cantilever beam

Fy Fy F
_J ! |

IA Mass m

3. Beam

Smooth surface
contact at 4.
Mass m

4. Rigid system of interconnected bodies
analyzed as a single unit

P ——— Weight of mechanism

neglected

m

34
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Body Incomplete FBED

1. Bell crank -~ mg

supporting mass
m with pin support
atA.

2 Control lever

applying torgue
to shaft at 0.

3. Boom OA, of
negligible mass
compared with
mass m. Boom

hinged at ) and

supported by
hoisting cable at B.

4. Uniform crate of
mass m leaning A
against smooth
vertical wall and
supported on a
rough horizontal
surface.

b. Loaded bracket

supported by pin é? &E‘
connection at A and B

fixed pin in smooth L
slot at B, - Load L *

I
Or. Emad Toma Karash
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Wrong or Incomplete FED

1. Lawn roller of

mass m being

pushed up
incline &,

2. Prybar hfting
body A having
smooth horizontal
surface. Bar rests
on horizontal
rough surface.

3. Uniform pole of
mass m being
hoisted into posi-
tion by winch.
Horizontal sup-
porting surface
notched to prevent
shipping of pole.

4. Supporting angle
bracket for frame;
pin joints.

5. Bent rod welded to
support at A and
subjected to two
forces and couple.

I
Or. Emad Toma Karash
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Example - |

Draw the free body diagram of the uniform beam shown in figure. The beam has a mass of (100
kg)?

A
o 6m
Solution:
Free Body Diagram (F. B. D)
4 1200 N
I 8
x A Effect of applied
S : force acting on beam
A, [ —— -
Effect of fixed I e
support acting ¥ —
on beam b —S— :
YosIN |
Effect of gravity (weight)
acting on beam

Example - 2

Two smooth pipes, each having a mass of (300 kg), are supported by the forked tines of the
tractor. Draw the F.B.D for each pipe and both pipes together.

37
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Solution:

Free Body Diagram (F. B. D)

Effect of B acung on A

A e R
Effectofsloped 7~ ~;/:“"
blade actingon A |/ g

‘~ N
3 e
; > <2

3 2943 N
Effect of gravity
(weight) acting on A

‘//

Effect of sloped
fork actingon A

A7 N\ [\
. o) \
307, Nl 293N
v
¥ 2943N
¥

38
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3.3. General Procedure for the Solution of Problems in Equilibrium

. Determine the given data and the unknown.
2. Draw the F.B.D for the member on which the unknown forces are acting.
3. Determine the type of force system acting on the F.B.D and the number of independent
equations of equilibrium.
4. Compare the number of unknown on the F.B.D with the number of independent equations of
equilibrium.
A. If the number of equations=the number of unknowns, then start the solution.
B. If the number of unknown > the number of independent equations, then draw F.B.D. for
another body and repeat step 3 and 4.
3. If the number of unknowns in the second F.B.D = the number of equations then solve the
problem. If it is not repeat step 4-b
B. If there are still too many unknowns after drawing F.B.D for all bodies, then the problem is
statically indeterminate.

3.4. Equilibrium of Force System

The body is said to be in equilibrium if the resultant of all forces acting on it is zero. There are two
major types of static equilibrium, namely, translational equilibrium and rotational equilibrium.

a) Formulas Concurrent force system

YE=0, ) R=0

b) Parallel Force System Non-Concurrent

ZFx =0 , ZMO =0
c) Non-Parallel Force System

Zszo, ZFy=O, ZM(,:o

3.9. Important Paints for Equilibrium Forces

. Two forces are in equilibrium if they are equal and oppositely directed.
2. Three coplanar forces in equilibrium are concurrent.

I
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d. Three or more concurrent forces in equilibrium form a close polygon when connected in
head to-tail manner.

Example - 3

Determine the magnitude T of the tension in the supporting cable and the magnitude of the force on
the pin at A for the jib crane shown. The beam AB is a standard (0.0 m) |-beam with a mass of (33

CATEGORIES OF EQUILIBRIUM IN TWO DIMENSIONS

Force System

Free-Body Diagram

Independent Equations

1. Collinear

F:g ..-r""-'-rx

EF. =0
2. Concurrent EF, =0
at a point
IF,=0
3. Parallel IF, =0 EIM,=0
4. General EF. =0 XIM. =0

EF}_ =0

kg) per meter of length?

40
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Solution:

Draw free body diagram (F. B. D)

41

A

B

F, = T sin 25°

0.5m

y T
| m
| F,=T COSESO 950

Ty,
* l

'
£

4.66 kN
10 kN

Free-body diagram

SF,=0 XF,=0,

y EMA=0

U +3XM, = —(T cos 25°) x 0.25 — (T sin 25°)(5 - 0.12) + 10 X (5 —1.5—-0.12)

+ 4.66

Ay

A=

(2.5-0.12) = 0
—0.227T —2.062T +33.8+11.091 = 0

—2.289T +44.891=0

44.891
T =

5989 19.612 KN

JE, = A, —Tcos25°=0
A, —19.612 X cos 25° =0
A, =17.775 KN
IE, = A, + Tsin25° — 4.66 — 10 = 0

= —19.612 X sin 25° + 4.66 + 10 = 6.372 KN

AZ+ A2 =/17.7752 + 6.3722 = 18.883 KN
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Example - 4
The (300 N) shaft M and the (300 N) shaft N are supported as shown in the figure. Neglecting

friction at the contact surfaces P,ILR and S, determine the reaction at (R and S) on shaft N.?

Solution:

Draw free body diagram (F. B. D)

300N

From F.B.D of M

1Y F =0

Qsin40—-300=0 ~Q=467NonM
From the F.B.D. of N

1Y Fy =0

S—500-Qsin40 =10 ~S=800NTonN

—>ZFX=0

R—Qcos40 =0 ~R=358N—-=o0nN

L]
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Example - 3
The member shown in Figure is pin-connected at A and rests against a
smooth support at B. Determine the horizontal and vertical components of reaction at

the pin A.
B{
/ 30 \\,' A 2 )
\\0.75 m 1 | 9ON'm
r —im— .

0.5m
60N

Solution:
Draw free body diagram (F. B. D)

F, = Ng sin25°
R

/] 3

F,= Ng co/s@\o A,

0.75m

Equations of Equilibrium: Summing moments about (A), to find direct solution for (Ng).
U 4+IM, =0
O +EM; =90+60X%x1—Ng Xx0.75
0 =90+ 60 — Ny x 0.75

Ny = 150 =200 N
B 075
SE. =0

2E, = A, —2005sin 30°
0=A, —200sin30°
A, =200sin30° =100 N
SE, =0
JF, = A, —200cos 30° — 60
0=A4, —200cos30° — 60

Ay, =200cos30° + 60 = 233 N
I
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3.B. Chapter Questions

|. Determine the magnitudes of the forces C and T, which, along with the other three forces shown,
act on the bridge-truss joint?

{Answer: T = 9.09 KN ,C = 3.03 KN}

2. Determine the magnitudes of the forces C and T, which, along with the other three forces shown,
act on the bridge-truss joint?

{Answer: F = 250 N}

3. The uniform (100 kg) |-beam is supported initially by its end rollers on the horizontal surface at A
and B. By means of the cable at C it is desired to elevate end B to a position (3 m) above end A.
Determine the required tension P, the reaction at A, and the angle made by the beam with the
horizontal in the elevated position.

I
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%,
6 m C\L 2m

A(,: E)B

{Answer: P = 654 N , 6 = 22°}

4 Each box weighs 40 N. The angles are measured relative to the horizontal. The surfaces are
smooth. Determine the tension in the rope A and the normal force exerted on box B by the inclined
surface?

{Answer: Ty = 51.2 N , Ng = 7.03 N}

0. The construction worker exerts a 30 N force on the rope to hold the crate in equilibrium in the
position shown. What is the weight of the crate?

{Answer- W = 935.9 N}

45
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E. The 20-kg mass is suspended from three cables. Cable AC is equipped with a turnbuckle so that
its tension can be adjusted and a strain gauge that allows its tension to be measured. If the tension
in cable AC is 40 N, what are the tensions in cables AB and AD?

|+:14 m—=|=0.4 m—-+-— 0.48 m —-1

[/4/7«5'14/5’/".' TAB = 1441 N ) TAD = 68.2 N}

7. A heavy rope used as a mooring line for a cruise ship sags as shown. If the mass of the rope is
90 kg, what are the tensions in the rope at A and B?

{Answer: Ty = 679 N , Ty = 508 N}
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Lhapter 4

Centroids and Centers of
Gravity



4.1. Introduction
A centroid is a weighted average like the center of gravity, but weighted with a geometric property
like area or volume, and not a physical property like weight or mass. This means that centroids are
properties of pure shapes, not physical objects. They represent the coordinates of the “middle” of
the shape.
To design the structure for supporting a water tank, we will need to know the weight of the tank and
water as well as the locations where the resultant forces representing these distributed [oads act.
4.2. Objectives

. To discuss the concept of the center of gravity, center of mass, and the centroid.

2. To show how to determine the location of the center of gravity and centroid for a system of

discrete particles and a body of arbitrary shape.

4.3. Centroids and Centers of Gravity
A centroid is the geometric center of a geometric object: a one-dimensional curve, a two-
dimensional area or a three-dimensional volume. Centroids are useful for many situations in
Statics and subsequent courses, including the analysis of distributed forces, beam bending, and
shaft torsion.
Two related concepts are the center of gravity, which is the average location of an
object’s weight, and the center of mass which is the average |ocation of an object’s mass. In many
engineering situations, the centroid, center of mass, and center of gravity are all coincident.
Because of this, these three terms are often used interchangeably without regard to their precise
meanings.

Consciously and subconsciously use centroids for many things in life and engineering, including:
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. Keeping your body's balance: Try standing up with your feet together and leaning your head
and hips in front of your feet. You have just moved your body's center of gravity out of line
with the support of your feet.

2. Computing the stability of objects in motion like cars, airplanes, and boats: By understanding
how the center of gravity interacts with the accelerations caused by motion, we can
compute safe speeds for sharp curves on a highway.

3. Designing the structural support to balance the structure's own weight and applied loadings
on buildings, bridges, and dams: We design most large infrastructure not to move. To keep
it from moving, we must understand how the structure's weight, people, vehicles, wind,
earth pressure, and water pressure balance with the structural supparts.

4.4, Difference between Centre of Gravity and Centroid

[. In an object, a center of mass is referred to as the point where the whole object's mass is
focused, which means the point's mass is represented as the whole object's mass. The
center of gravity of any object is the point where gravity acts on the body.

2. On the other hand, the centroid is referred to as the geometrical center of a uniform
density object. This means the object has its weight distributed equally across all body
parts. If the body is homogeneous (having constant density), its center of gravity is

equivalent to the centroid.

CENTROID

Centre of gravity of a material body is The centroid of a plane figure is the
a point that may be used for a summary arithmetic mean position of all the
description of gravitational igure. Informally, it is the

interactions. The centre of gravity of point at h a cutout of the shape
any body can also be determined by could be perfectly balanced on the tip
a simple physical procedure of a pin

L]
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4.3. Equations for Centroids
The defining equations for centroids are similar to the equations for Centers of Gravity , but
with volume used as the weighting factor for three-dimensional shapes.

Centers of Gravity Equations

Centroids Equations

and area for two-dimensional shapes

DEA DU

> A >4

T =

|f the shape has an axis of symmetry, every point on one side of the axis is mirrored by another
point equidistant on the other side. One has a positive distance from the axis, and the other is the
same distance away in the negative direction. These two points will add to zero the numerator, as
will every other point making up the shape, and the first moment will be zero. This means that the
centroid must lie along the line of symmetry if there is one. If a shape has multiple symmetry lines,
then the centroid must exist at their intersection.

[
[
]
I
|
- I e e o
|
|
|
|
|

Figure . Centroids lie upon axes of symmetry
Since rectangles, circles, cubes, spheres, etc. have multiple lines of symmetry, their centroids
must be exactly in the center as we would expect.

L]
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Table. Centroids of Common Shapes
Rectangle Triangle
e | —-'—[
=/
Co 2" /J, % h
%h L (873 .l h
. T |
o *I—b - -,!,—b - 2 |
2 g - —,‘-b st >
~—h — - h
A = bh A=2Lpn
Circle Semicircle
5 \ ;‘—; = 0.4244r
o0
A =mr? A %m B
Quarter-Circle
r
c

[ Ar _ 04244r
3

Ar - 0.4244r —
3r

2rsina | Note:
' 3a ' ais in radians.
A= %ltr2 A = ar?
Semiparabolic Area Parabolic Spandrel
- b e o
: : Pa{'abc')llc g 5 h
I 1y ! SR i . Vertex curve 107 4
8 8
! y 5 L3, Fl
Vertex 2 Parabolic .3_;, 5 4 g1 b 10 '
\J curve 5 1 e
2
A =% bh A =1bh
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AREA MOMENTS

FIGURE CENTROID OF INERTIA
o )
Are Segment o et | F = ISina _
~LF | ¥
~ . f
~f
Quarter and Semicircular Arcs
— —
—_— = _ 2r
l (= o // —¢C‘>\ y= = —
v .
(I I N D S
wrd
==
Circular Area [ =
=

rd
IL=1 ="
1 bR
| = _ dr I = E'_a_]
Semicircular +Ei— Y =3. =155 r
a F |{
N - ="
)
.P'd'
y L=l =15
_ Foj¥ fﬁf,,:[i 4—]
Quarter-Circular dar © 116 9w
Area
A
L=
Ji’ I:=§(n—%sm2ﬂ!}
| r 5 s
. | = — = _2 rsmna Y 1 .
Areaf G L) |7 =32 L= 2+ Lain2o)
L_%r‘:z
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Rectangular Area I = br?
}'la : 3
I
1 T ,ﬁ.}:ﬂ
I =24
JL: et | - -
i
——x
\ L= 2Rp2,p
Lo b
F = a+bh *T 12
3
Triangular Area 1. 7 bA?
1y _L . 36
| y=i
b 4 I ='b_h$
I 4
Area of Elliptical I = mab® 7 _ (# B %'] ab®
Quadrant - - da T 18 7 l1e
‘T 3
| I =1r-g-f-£—}, (—;ﬂ:—aﬂab
- w» Y"1 Y 16
b= * .‘:Jg ¥y = E_W
N I, = Wb{a 2452
a
Subparabolic Area
) I = ab®
y:kzjz—xz f:a_ﬂ 21
d ’ * &
b
Area A =90 | L=
3 | - _3b
y=35
| 10 .r,=.;bf+E}
5 21
Parabolic Area
¥ 3a fe= 2.;:Tb3
| _}'=k12-£.1‘ * = ?
3
- _3b
y = 5 52
L _zﬂb(—+ ]
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4.B. Steps for Analysis

. Divide the body into pieces that are known shapes. Holes are considered as pieces with
negative weight or size.

2. Make a table with the first column for segment number, the second column for weight,
mass, or size (depending on the problem), the next set of columns for the moment arms,
and, finally, several columns for recording results of simple intermediate calculations.

3. Fix the coordinate axes, determine the coordinates of the center of gravity of centroid of
each piece, and then fill in the table.

4. Sum the columns to get x, y, and z. Use formulas like.

X =2Xl'.Ll' =Zyi.Ll 2 =2Zl.Ll
c=7yr, 0 YT Ty 0 T Ty
X _in'Al _Zyi'AL 5 _ZZL'.A,:
C=7ya, © YT Tza 0 T T3a
X _ZX,:.V,: _ZylVl 5 _ZZL'.V,:
c=Tzy, 0 YT Ty, T Ty
x ZZ'xi.mi ZZ'yi.mi 4 ZZZi.mi
¢ Z'mi ’ e Z'mi ’ ¢ Z'mi

I
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Example - |

Locate the centroid of the wire shown in the figure below?

— o

20 mm

!//

Solution:

[.  The wire is divided into three segments as shown in the figure below.

7 0
<20 mm

— N
“2) (60) : >< 20 mm

= 38.2 mm L Sy
~ —_—
60 mm 9
s

i |
/ X
10 mm i O

2. Moment Arms. The location of the centroid for each segment is determined and indicated in
the figure. In particular, the centroid of segment (1) is determined either by integration or

by using the table .

Seg. | L;(m*) |x;(m)|x;.L;(m?)|y;(m)|y;.L;(m?) | z; (m) | z; . L; (m?)
| | m(60) =188.5 60 11310 —-38.2 —7200 0 0
2 40 0 0 20 800 0 0
3 20 0 0 40 800 —-10 —200
Sum 248.5 11310 —5600 —200
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Xc = SL - 2485 = 45.5mm
y,.L; —5600

Ye =Ty T oagg . 2Smm
Lz;.L; —200

Zc= 5L " 2ags . 0805mm

C = (45.5,—22.5,—0.805)

Example - 2

Locate the centroid of the plate area?

o

m

Im
{

lm|

2m 3m |

Solution:

Plate divided into 3 segments. Area of small rectangle considered "neqgative”.

ISm|lm

Solution Moment
||

56
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Arm Location of the centroid for each piece is determined and indicated in the diagram.

Segment A; (m?) x; (m) x; . A; (m3) yi (m) yi.A; (m?)
| %(3)(3) =45 1 45 1 4.5
2 3)(3) =9 -15 —13.5 1.5 13.5
3 -(2)(1) =-2 - 25 5 2 _4

Sum 11.5 —4 14
Summations
T Tya T 115 ooremm
P yi 'Ai 14
Ye="3a, " 115 mm
. 2 Zi 'Ai .
=734
C =(—0.348,1.22)
-l."
:
|
!
1 (C = —0.348,122)
2m :
i /
_dmp . _
Kl ; Y
o '; |
tml -M m !

I
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Example - 3
Locate the center of mass of the bracket and shaft combination. The vertical face is made from
sheet metal which has a mass of 25 kg/m’. The material of the horizontal base has a mass of 40

ka/m’, and the steel shaft has a density of 7830 Kg/m°. (All dimensions in the figure are in

millimeters)?
e
&
y
B 8
x 3 All Dimension in mm
Solution
Seq. V; (mm?) | x; (mm) x;.V; (mm®)|y; (mm) y;.V; (mm?®) | z; (mm)| z;.V; (mm?)
| 36 10 360 1.5 54 g 96
2 216 4.5 972 1.5 324 4 864
3 192 1.5 288 7 1344 4 768
4 36 1.5 54 12 432 g 96
Sum 480 1674 2154 1824
_in'Vi _ 1674_ 349
= Tyy, Tage oM
Yc = IV, =80 _ * mm
_ZZi.Vi_ 1824—380
=Ty Tage N

C = (3.49,4.49,3.80) mm
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Example - 4
A thin sheet, copper and aluminum with thicknesses (ts = 0.03m,t, = 0.02m,t, =
0.04 m and densities, (o5 = 7850 Kg/m?3, pc = 8960 Kg/m3,p, = 2700 Kg/m?>,
consisting of a square and two triangles, is bent to the depicted figure (measurements in

meter). Locate the center of gravity?

Solution
The body is composed by three parts with already known location of centers of mass. The
|location of the center of mass of the complete system can be determined from:

_in.mi _Zyl-.mi _Zzi.mi
Xc = Z'mi ’ Ye = Z'mi ’ “c = Z'mi
. _2pix Y _2piyi Vg _2pi.zV;
p= Lttt cPi-%i- 7

, =~ o  Zc =
2p;. Vi ye 2p; . Vi T Ipy;

The total area is:
Vs =4Xx4x0.03=048m3

1
VC=§X4X3XO.02=O.12m3

1
VA:EX4X3XO'O4=O'24m3

2V; =048 +0.12 + 0.24 = 0.84m3
2p;.V; =7850%x0.48 4+ 8960 x 0.12 + 2700 x 0.24 = 0.48 + 0.12 + 0.24
= 5491 Kg
X =Z'pi XLV
2p;. Vi

I
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_2piyi Vg

y =
T ZpV
4 =Zpi'Zi'Vi
T ZIpy;

Calculating the first area moments of the total system about each axis.
in each case one first moment of & subsystem drops out because of zero
distance: x, = 0, y, = 0,and zg = 0. Thus, we obtain:

2
_xems bam, 23768+ (2x4) x 648
‘ 2m, 5491

=1.68m,

_ Xs.Mg.txc.me.  2X3768+2Xx1075

- = 1.76
Ye m, 5491 m

_ Xe.me +x4my  1X1075+1 X 648

_ = 0.31
“ m, 5491 0.31m

C = (1.68,1.76,0.31) m

I
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4.7. Finding the Centroid via the First Moment Integral

Centroid for Curved Areas

Taking the simple case first, we aim to find the centroid for the area defined by a function f(z), and the vertical lines £ = a and

x = bas indicated in the following figure.

a Ar b

To find the centroid, we use the same basic idea that we were using for the straight-sided case above. The "typical" rectangle

indicated is z units from the y-axis, and it has width Az (which becomes dz when we integrate) and height y = f(x).

Generalizing from the above rectangular areas case, we multiply these 3 values (z, f(:r:) and Az, which will give us the area of
each thin rectangle times its distance from the z-axis), then add them. If we do this for infinitesimally small strips, we get the z-

coordinates of the centroid using the total moments in the 2-direction, given by:

total moments 1

b
total area A_/; zf(z) de

And, considering the moments in the y-direction about the x-axis and re-expressing the function in terms of y, we have:

T =

total moments 1 f d

Y= Ttotalarea A - y f(y) dy

:

z = f(y)

Or. Emad Toma Karash

61



Example - 5

Find the centroid of the area bounded by y = &

Here is the area under consideration:

&

¥
y =1
8__

¥

In this case,y = f(z) = :1‘:3, a=05b=2

We find the shaded area first:

2 172
16
A:fwgdmzlm—] — 4

() adr 2 X

3

, & = 2 and the z-axis.

Next, using the formula for the z-coordinate of the centroid we have:

b
T = %j‘; zf(x)dz
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-8
_ 12 3y
4 7
_ 0
1T 3 % 128
—3_64— - ]
—2.99

So the centroid for the shaded areais at (1.6, 2.29).

I
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4.8. Chapter Duestions

0; Locate the centroid of the area shown in the figure below?

120 mm

60 mm

:

5
[

90 mm

A

20 mm

40 mm

20 mm

X

{Answer: x; = 34.9 mm ,and y; = 100.4 mm}

0y: Locate the centroid of the area shown in the figure below?

{Answer: x, = 92.9 mm ,and y, = 85.8 mm}

64

[s: Locate the centroid of the depicted area with a rectangular cutout. The measurements are

given in meter?

f -]

{Answer: xo = 3.77 m ,and y. = 2.18 m }
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0,: A wire with constant thickness is deformed into the depicted figure. The measurements are

given in mm. Find the Locate of the centroid?

40 mm

30 mm

{Answer: y. = 5.08 mm }

Os: A thin sheet with constant thickness and density, consisting of a square
and two triangles, is bent to the depicted figure (measurements in meter). Locate the center of

gravity?

Xc=171m, yc = 1.57,and z; = 043 m}

[g: Locate the centroid of the area shown in the figure below?

y
|
88 12

{Answer: x, = 7.5m ,and y, = 5.08 m }
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[: Find the Locate of the centroid of the area shown in the figure below, by using integration?

y=23—x)

66
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Lhapter 3

Moments of Inertia



a.l. Moment of Inertia and Properties of Plane Areas

The Moment of Inertia (I) is a term used to describe the capacity of a cross-section to resist
bending. It is always considered with respect to a reference axis such as (X-X) or (Y-Y). It is a
mathematical property of a section concerned with a surface area and how that area is distributed
about the reference axis (axis of interest). The reference axis is usually a centroid axis. The
moment of inertia is also known as the Second Moment of the Area and is expressed

mathematically as:

Where:
y = distance from the x axis to area 24

x = distance from the y axis to area d4

I
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Example

o fe—ax

dA

N HQ_

ALEALARLARAARS ARRRARARRRRRNY

a.2. Application of moment of inertia

The crank on the oil-pump rig undergoes rotation about a fixed axis that is not at its mass center.
The crank develops a kinetic energy directly related to its mass moment of inertia. As the crank

rotates, its kinetic energy is converted to potential energy and vice versa.

|s the mass moment of inertia of the crank about its axis of rotation smaller or larger than its

moment of inertia about its center of mass.

L]
Or. Emad Toma Karash
69



a.3. Radius of Gyration

The radius of gyration of an area with respect to a particular axis is the square root of the quotient
of the moment of inertia divided by the area. It is the distance at which the entire area must be
assumed to be concentrated in order that the product of the area and the square of this distance
will equal the moment of inertia of the actual area about the given axis. In other words, the radius
of gyration describes the way in which the total cross-sectional area is distributed around its
centroidal axis. If more area is distributed further from the axis, it will have greater resistance to
buckling. The most efficient column section to resist buckling is a circular pipe, because it has its

area distributed as far away as possible from the centroid. Rearranging we have:

IL,=ki.A, I,=k3.4, I,=k;.A

<
=
Il
R |

P

P

k,= |-~
/A

The radius of gyration is the distance k away from the axis that all the area can be concentrated to

result in the same moment of inertia.

I
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a2.4. Polar Moment of Inertia

lp = Jap’dA
b = [a(x% + y*)dA
lp = Jax2dA + [ay?dA

b=+,

In many texts, the symbol J will be used to denote the polar moment of inertia.

J=1.+1,
Shear stress formula:
— Tr
T
a.3. Product of Inertia
ly = |axydA

Consider the following:

O

|t an area has at |east one axis of symmetry, the product of inertia is zero.

I
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a.B. Properties of Plane Areas

1 v

Rectangle (Origin of axes at centrowd.)
bi b h
A = bh \':2 y»-l
bh? hh?*
I, = — y =
12 12
bh

I, =0 l, = l"(h" + b7)

-

Rectangle (Ongin of axes al corner.)
bh? hb?
. iy ’v =
3 3
bk’ bl .
1y = 4 l,= 3 (h* + b")

Tow = 6(h* + h?)

b*h?

Triangle (Origin of axes at centroid.)

A bh _ b+c 2
= = = —
2 3 5
Bim it i b8
= — = — == C
36 * 36
bh?

bh
l”=7—2(h—20) 1,=3—6(h2+h2—b(‘+c2)

Triangle (Origin of axes at vertex.)

bh*

bh "
L=— 1= 05 =3+ )

bh?
il

bh?

(3b — 2¢)

Ty =

fo—-b—-

Isosceles triangle (Origin of axes at centroid.)

bh b h
= — X =~ = -
> 2 7153
bh? hb?
e e )
L. 36 Y48 >
I, = v @h* =3y 1 B
?7 144 ==

(Note: For an equilateral triangle, h = /3h/2)

72
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Right triangle (Origin of axes at centroid.)

bh _ b _h
X=- V==

2 3 SR

b*h?

_hb’ 7
36 R an

bh®

bh
- h* + b? logw=
I, 36( + b%) B |5

Right triangle (Origin of axes at vertex.)

, : hb? 3 b*h*
i~ g P8

bh bh?
IP-—‘i_z‘(hz'*'bz) IBB= 4

Trapezoid (Origin of axes at centroid.)
h(a + b) _ h(2a+ k)
A= ——
2 a + b)
_ h3(@* + 4ab + b?)
*7 36la+b)

~ h*(3a + b)
- 12

Circle (Origin of axes at center.)
nd* ar*  wd*
A=nr?=— =—=—

4 4 64

ot mdt S Sad*t
e BR— —, =

h=5=75 4 64

I.=1,

Circular ring (Origin of axes at center.)
Approximate formulas for case when ¢ is small.

wd>t
= =
s 8

md>t
p=21r’t =
4

A = 2nrt = ndt

T =]

Semicircle (Origin of axes at centroid.)

nr? _ 4r
2 y—3n

i 4 4
O O A e
2r 8

nr*
Iu e

8

L

Iy=0
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Quarter circle (Origin of axes at center of circle.)

r? 4r
A=— X=y=—
4 3n
art ré
IL,=1,= L, =
16 8
9n? — 64)r*
= L— ) ~ 0.05488*
1447

Quarter-circular spandrel (Origin of axes at vertex.)

n 2
A=(l—~)r'
4

(10 = 37)r
X = ~ 0.7766r y=—
3(4 — n) i 3(4 —n)

~ 0.2234r

Sn 1 =
I.=|1- r* 2001825 I, =1Ig=|-——)r*~0.1370r*
16 ’ 3 16

a.7. Moment of Inertia of Compaosite Areas

In the context of calculating the moment of inertia, a composite areais an area consisting of several non-
overlapping (disjoint) sub-areas. The boundaries specifying the sub-areas can be explicitly declared by the
geometry or arbitrarily chosen. Considering an area as a composite area is to simplify the calculation of the
moment of inertia of the whole area. having si7p/e shapes with already known or given formulations of moments
of inertia. To find the moment of inertia, the following table and equations are applied:

Part A dx dy A, dx’ A, dy? Ixg lya
(mm) (mm) (mm) (mm*) (mm") (mm®) (mm*)
|
2
3
Total ZA.d: | ZA.d; ) [ )]

I, =Xl +2A.d5
I, = %I, + ZA.d?

I;=I1,+1,
I,

ky= |=
*— |A

I

ky,= |=
A

L]
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a.8. Parallel Axis Theorem
Iy = lye + Ad?
ly = lyc + Ad?

The moment of inertia of an area with respect to any given axis is equal to the moment of inertia
with respect to the centroidal axis plus the product of the area and the square of the distance
between the 2 axes.

The parallel axis theorem is used to determine the moment of inertia of composite sections.

a.9. Solved Examples
Example .

Determine the moments of inertia of the rectangular area about the centoidal (x, and y,) axes.

the centroidal polar (zg) through (C). the x-axes, and the polar axis (z) through (0). If
(h=6mandb =2m).

I
I
-1
f
et
[
h=6m
&

o
A=bh=2x6=12m?

By interchange of symbols, the moment of inertia about the centroidal (x, — axis) is:

I, = JyZdA

L]
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h3 h3
I, = J y>.bdy=h y—Sh/z =b @+@ =b 2K ~ L w3
* |13 3 3 124 12
~h/2 ~h/2
1 =i><2><63=—=36m4
* 12
By interchange of symbols, the moment of inertia about the centroidal (y, — axis) is:
I, = fxsz
b/2 b3 b3
I, = f x2.hdx=h 21" =h @+@ P L P
Y ' 13 1 3 3 |1 24 12
~b/2 ~b/2
I, = . ><6><23—48—4 4
Y T 12 “12 ™
The centroidal polar of inertia is:
IL=I,+I,

m _Ygp3 13 _ 1 2 2y _ 1 2 2y _ 4
IZ_1zbh +12hb _12hb(h +b )—12><6><2><(2 +6%) =40m
By the parallel - axis theorem the moment of inertia about the x-axis is:

I,=1I,+ Ad>

_ 1,23 R\ _ 1 3 62 _ 4
L=—bh3+A(1) == x2x63+12x% =144 m

Also obtain the polar moment of inertia about (0) by the parallel axis thearem, which gives the following:

I,=1,+ Ad3

2

O )] b

1
=§><12><(22+62)=272 m*

1
—_ 2 2
Iz—le(b +h“)+ A

I
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Example 2.

The cross-sectional area of a wide-flange |-beam has the dimensions shown. Obtain a close
approximation to the handbook value of by treating the section as being composed of three

rectangles.
’:
|
[ —
e
Solution:
—_— v
7—%\,—1‘
\ \
| 3 2
‘ L ! 460mm
42 s““_}{_ i
\
\
B
Rart A dx dy A, dx’ A, dy? Ixg lya
(m) (m) (mm) (m*) (m*) (m*) (m*)
[ 73140 0 0 0 0 789702000 | 154087895
7 79927 %“‘%%:44275 0 | -58GB5IR8.63 0 -45004223791 | -12377879 61
3 79927 %“*ﬂ%:%m 0 | -58GB5IRR.63 0 -45004223791 | -12377879 61
> 13286 1733033726 0 289R1752418 | 129.331935.78

I, =X+ XA.d% = 389617524.18 + 0 = 389617524.18 mm*
y

I, =XI,0+2%2A .d2 =129.331935.78 — 117330337.26 = 12001598.52 mm*

71

=171.25mm

= 30.06 mm

= 173.86 mm

I; =1, +1,=389617524.18 + 12001598.52 = 401619122.7 mm*

- I, [389617524.18
1A 13286

" I,  |12001598.52
Yo lA 13286

" — I, 4016191227
zo 1A 13286
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Example 3.
Determine the moments of inertia about the x- and y-axes for the shaded area. Make direct use of
the expressions given in Table | for the centroidal moments of inertia of the constituent parts.

130
m_m 30 mm

30 mm

\
\
\
\
‘ |
=40 mm-——=40 mm —‘

Solution:

The given area is subdivided into the three subareas shown a rectangular (1), a quarter circular
(2). and a triangular (3) area. Two of the subareas are "holes” with negative areas. Centroidal
x0 - yO axes are shown for areas (2) and (3), and the locations of centroids CZ and C3 are from
Table |. The following table will facilitate the calculations.

T

Part A dx dy A, dx A, dy’ g lyg

(mm) (mm) (mm) (mm°) (mm°) (mm’) (mm’)

| 4300 40 3l 7630000 | 4320000 | 1440000 | 2560000

2 10718 | 1273 4127 | -N4600.a7 | -1o80I60.4 | -444028 | -444028

3 -500 bb.67 I0 | -ZbGB6333.34 | -G000D0 | -30000 | -23333.33

Total | 3432.87 4836466.09 | 26738336 | 136aa47.2 | 1a8213.87

I, = Xl + ZA.d2 = 1365547.2 + 2679839.6 = 4045386.8 mm*
I, = 21,4 + XA .d% = 158213.87 + 4898466.09 =7360679.96 mm*
I; = I, + I, = 4045386.8 + 7360679.96 =11406066.76 mm*

40453868 _
7349282 mm

I, j7360679 96

S — 45.906

ky= 12 3492.82 mm
o _ | _ [1140606676

2= A~ | 349282 = °/rmm
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Example 4.

Determine the moment of inertia of the area shown in figure below about the x-axis.

Solution:

25 mm

=— 100 mm —|

'

75 mm

75 mm

¥

X

Composite Parts. The area can be obtained by subtracting the circle from the rectangle shown in
figure below. The centroid of each area is located in the figure. Parallel-Axis Theorem. The
moments of inertia about the x-axis are determined using the parallel-axis theorem and the
geometric properties farmulae for circular and rectangular areas (Ix = w r'/4; Ix = bh®/12), found

in table 1.
~—100 mm {

75 mm zst’

75 mm

l .
Part A dx dy A Ay’ A, dy Ixg lyg

(mm) (mm) (mm) (mm®) (mm’) (mm’) (mm’)

I (o000 all T8 37200000 | 84375000 | 28125000 | (2500000
Z -1964.29 ol 75 -4910725 | -11049131.25 | -306319.64 | -306319.64
Total [3035.71 32089275 | 73325868.75 | 27818080.36 | 12193080.36

I, = 2L+ ZA.d; = 27818080.36 + 73325868.75 = 101143949.11 mm*
I, =Xl,0 + 2A .d% =12193080.36 + 32589275 = 44782355.36 mm*

19

k, =

y

A

b

I, \/101143949.11

13035.71

44782355.36

13035.71

= 88.09 mm

= 58.61mm
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Example 3.

Determine the moments of inertia and the radius of gyration of the shaded area with respect to the

X and y axes.
0.5 m —»| :Zm 2m= le- 0.5 m
El‘ﬂ
0 o
0.5 m+| F ﬂ |*0.15Hr1n
Solution:
0.5 m St e - 05m
B ‘f—r 2m
ilid.n
L
(€& Hi—m I m
05m-» [ ! | }«015";1
Part A dx dy Add | OALdy g lyg
(m) (m) (mm) (m') (m') (m') (m')
A 30 I I I I 90 2.0
B -8 0 i I -32 -2.67 -10.67
C -4 I [. I -3 -0.33 -0.33
P I3 I -4 87 46,5

80

I, = 2o + ZA.d5 = 87 — 41 = 46mm*

I, =X, + 2A. dz = 78.5 — 24 = 54.4 mm*

\/; / = 1.599 mm

by _ 465 _ = 1.607
A mm
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a.10. . Chapter Questions

0, Determine the moment of inertia of the section relative to the x-axis?

¥

l H-{ls m—-|

0.2m

02m

=06 m —=|

A) I, = 109.6 (10*) mm*
B) I, = 163.6 (10°) mm*
C) I, = 224.0 (10%) mm*
D) I, = 298.5 (10%) mm*

[,: Determine the moment of inertia of the section relative to the x-axis?

A
\

— 120mm —=

20 mm

40 mm

A) I, = 6.0(10%) mm*
B) I, = 9.0 (10°) mm*
C) 1, =12.0(10% mm*
D) I, = 15.0 (10%) mm*

[s: Determine the moment of inertia of the shaded area with respect to the x - axis?

Y

-—240mm——~|
7

{Answer: I, = 92.3 X 10°m* }

[;: Determine the moment of inertia of the area shown in the figure?

8l
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12 mm 12 mm
6 mm

24 mm

24 mm

L—2-1mm—--—2-1 mm—| f

{Answer: I, = 39 X 10* mm*}

0s: Determine the moments of inertia and the radius of gyration of the shaded area with respect to
the x and y axes and at the centroidal axes?

y
1 cm 1 cm
st 1
5cm
1 cm
- R X
“ 5cm |

{Answer: I, = 145 cm* I, = 51.25 cm* , [, = 51.25 cm* K, = K,, = 1.848 cm}

Qg: : Determine the moment of inertia of the area and the radius of gyration shown in the figure?

i« 50 mm &5 50 mm 3| 100 mm

N

{Answer: I, = 10.47 x 10® mm* ,K, = 1.848 cm}

[;: Determine the moment of inertia of the shaded area with respect to the x - axis and y-axis?

L]
Or. Emad Toma Karash
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{Answer: I, = 45.7 x 10° mm* , I, = 53 x 10° mm*}

I
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Lhapter b

Strength of Materials



b. Strength of Materials

B.1. Introduction

Strength of materials, also known as Mechanics of materials, is a subject which deals with the
behavior of solid subject to stresses and strains.

Stress & Strain

When a force is applied to a structural member, that member will develop both stress and strain as
a result of the force.

The applied force will cause the structural member to deform by some length, in proportion to its
stiffness.

|. Stress

Stress is the force carried by the member per unit area, and typical units are [Ibf /
in? (psi)] for US Customary units and [N / m? (Pa)] for Sl units:

O'ZZ (1—1)

Where, (F) is the applied force and (A) is the cross-sectional area over which the force acts.

2. Strain
Strain is the ratio of the deformation to the original length of the part:
L—L, &

8 = — —
Lo Lo

(1-2)

Where (L) is the deformed length, (L) is the original unreformed length () is the deformation,
and (&) change in length.

7-2. Types of loading

There are different types of loading which result in different types of stress.

I
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|. Axial Force

Type of stress is called an Axial Stress (general case)
A. Tensile Stress (o,): If force is tensile as figure (I-

)}

F
Ut:Z (1-3)

B. Compressive Stress (o.): If force is compressive
as figure (I-2).

F
O'C=Z (1-4)

2. Shear stress (7)

Type of stress is called a Transverse Shear Stress as

figure (I-3).

T= (1-5)

3. Bending moment stress (o)

Type of stress is called a Bending Stress as figure (1- 4).

M.y
Op = I
c

(1-6)

Where: (M) is the bending moment, (y) is the distance

Figure 1-1: Tensile stress

Figure 1-2: Compressive stress

F
—

F
<+

Figure 1-3: Shear stress

ag
( tension 7 >
compression
M o /é M

Figure 1-4: Bending stress

between the centroid axis and the outer surface, and (I..) is the centroid moment of inertia of the

cross section about the appropriate axis.
4. Torsional stress

Type of stress is called a Torsional Stress as figure (1-3).
(Engineer's theory of Torsion (E.T.T.)).

86

(s &

Figure 1-5: Torsional Stress

Or. Emad Toma Karash


https://mechanicalc.com/reference/cross-sections#moment-of-inertia

T T G.0
FCTT L (=7

Where: () is the shear stress, (r) is the radius, (T) is the torsion torque, (1) is the polar moment
of inertia of the cross section, (G) is modulus of rigidity, (@) is the torsion angle, and (L) is a
length of shaft.

Figure (I-B) shown polar moment of inertia for the
following:

Td* . .

I = = For solid circular section,
m(di—-d? . .

I = m(do—d;) For hollow circular section,
ab3 . )

I=— For solid rectangular section.

Figure 1-6: Polar moment of inertia

B-3. Hooke's Law

Stress is proportional to strain in the elastic Sreld point
region of the material's stress-strain curve proporonaity it
(below the proportionality limit, where the curve

is linear), figure (I-B).

Material Stress-Strain Curve

fracture point

Stress, 0

B-3-1. Engineering and True Stress Strain
Figure 1-7: Hooke's Law

B-3-1-1. Engineering Stress (ES)

Pt D - Uttimate Tensile I
ES: is equivalent to the applied uniaxial tensile or Srengin._Gnzet of necking !
compressive force at time, a fraction of the T b \,,1"
specimen's original cross-sectional area, figure | e
(I-8). g
1-3-1-2. True Stress (TS) I

|

T8: is equivalent to the applied uniaxial tensile or i
compressive force at time, divided by the S — :
specimen's cross-sectional area at the moment, Figure 1-8: Engineering and True
fiqure (I-8). Stress
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Normal stress and strain are related by:
o

E = (1-8)

Where: (E) is the elastic modulus of the material, (o) is the normal stress, and (&) is the normal
strain.

Shear stress and strain are related by:
G=1_ (1-9)
14

Where: (G) is the shear modulus of the material, (7) is the shear stress, and (y) is the shear
strain. The elastic modulus and the shear modulus are related by:

E

“=a+n (1-10)

Where: ( u ) is Poisson's ratio.

B-4. Poisson's ratio

Poisson's ratio is the proportion of [ateral (transverse) contraction strain to longitudinal
extension strain in the direction of stretching force, figure (1-9).

The value of Poisson's ratio varies from 0.25 to 0.33. For rubber its value varies from 0.4 to 0.5.
Mathematically:

) : _ Lateral strain
Poisson's ratio = - - - Lateral
Longitudinal strain Strain

Lateral strain

H= Longitudinal )\ Longitudinal

B Longitudinal strain strain | T L — T _____ Strale
/ y Lateral \
e ’ Strain . \ ‘
Lateral P
u= (1-10) . . .
€Long. Figure 1-9: Poisson's ratio

I
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B-3. Solve examples
Example |

A force of (100 KN) is acting on a circular rod, figure (1-10), with diameter (a0 mm). The stress in
the rod can be calculated as:
Solution;

Given: F = 100 KN = 100000 N,d = 50 mm,r = % = 25mm

F <
O't == Z )
F =100 x 1000 = 100000 N F F
A=m. r?
22 . , _ _
A= - X (25)% =1964.286 mm Figure 1-10: Circular rod
_F 100000 50,909 P
% =7 = Toange 20009 oz MPA)
Example 2

A metal shaft diameter (12 mm), and long (.o m), figure (I-11). A tensile force of (1000 N) is applied

to it and it stretches (0.1 mm). Assume the material is elastic. Determine the stress and strain in
the shaft?

F = 7—> F
Solution: e

Figure 1-11: A metal shaft

Given:d = 12mm,r =
6mm,L=15m=
1500 mm,F = 1000 N,§ = 0.11 mm

— 2 _ 22 2 _ 2
A=m.r°= 7 X (6)* = 113.143 mm

F 1000
% = 47 113143 4
s 011
= 0.000073 = 73
T I, 1500 He

I
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Example 3

A steel tensile test specimen, figure (I-12) has an across sectional area of (120 mm?), and gauge
length (50 mm), the gradient of elastic section is (433 KN/mm). Determine the modulus of
elasticity?

F

Solution:
Given: A = 120 mm?, L =50mm,
F KN
Gradient ratio (=) = 433 —
o) mm
= 433000 N/mm
F
c F L 50 )
E=—=5.7= 433000 x 0= 180416.667 MPa Figure 1-12: A steel
180417 GPa tensile test specimen
Example 4

A long of the steel column is (4 m), and diameter (30 cm),
figure (I-13). It carries a load of (100 MN). If modulus of
elasticity is (210 GPa), calculate the compressive stress and
strain and how much the column is compressed?

-

Solution:
Given:L =4m = 4000 mm,
d=50cm =500cm,r = 250 mm, F = &
—
=100 MN = 100000000 N, E

=210 GPa = 210000m Figure 1-13: A steel column

22
A== x (250)° = 196428571 mm®

F 100000000

e =7 = Togazggy1 200091 MPa
E= N _ 0 509091 0242 = 242
- ®=FE T 210000 " - eme e

€=Z = 6 =¢.L=0.00242 x 4000 = 9.68 mm

I EEEEEEEEEEEEEEEEEEE—————
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Example 9

Calculate the force needed to a plate of metal (5 mm) thick and (0.8 m) wide given that the ultimate
shear stress (0 MPa), as shown in the figure (1-14)?

Solution:

Ihe area to be cut is a rectangle

t=5mm:w=0.8m=0.8x1000=800mm:
r=50N /mm?

A=wt =5x800= 4000 mm?

r=% = F =7.A=50x4000=200000N =z

Example b

Calculate the force needed to shear a Screw (I2 mm) diameter given that the ultimate shear stress

is (30 MPa), as shown in the figure (I-13)?

Solution:
[he area to be is the circular area:

rd?  3.14x(12)?
4 4
F
T=—
A

F=7A=90x113.04=101736N ~10.17KN  ~ """ " - - oo

A—

=113.04 mm?
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Example 7

A pin is used to attach a clevis to a rope, figure (I-1B). The force in the rope will be a maximum of
(60 KN). The maximum permitted shear stress in a pin is
(40 MPa). Calculate the diameter of suitable pin?

P g S S S ey

—]

Solution

—

Celvis Pin

[he pin is in double shear so the shear stress is:

____________________________

F 60000

2t 2X40

= 750 mm

Also:

92
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Example 8

A simply supported beam is subject a point load of (200 N) at the mid - spam of the beam as shown
in the figure (I-17). The beam has a circular (50 mm) diameter. Calculate the maximum stress due
to bending?

200 N

O

38
NE

2m i 2m -
Lall- ol »
. Latie ] Lad

Figure 1-17: A simply supportedr beam
Solution;

Given:

F=200N,d=50mm ,L; =2m = 2000 mm ,L, =2 m = 2000 mm.

100N 100 N
S.E
-100 N -100 N
200000 N.mm
B. M. /\
M.C
Omax. = i

M =100 x 2000 = 200000 N.mm
_md*  3.143 x (50)*

_ 4
I = el el = 306933.59 mm
d B 50 _ 9t
=5 =5 = mm

M.C 200000 x 25
= = 16.29 MPa

Omax. —
¢l

Or. Emad Toma Karash
93




Example 9

A diameter solid steel shaft (ABCDE), figure (1-18) is (a0 mm) see in figure. If have torques (T;= 200
N. m, T = 900 N. m and Tz = 300 N. m). distance between gears (B & C) is (LI = 200 mm) and
distance between gears (C & D) is (L, = 300 mm), modulus of rigid is (G = 30 GPa). Determine the

maximum shear stress (“ma-) in each part and twisting angle (¢BD )?

b

a

Figure 1-18: A simply supported beam

Solution

Given: {d= 50 mm. I;=Z00N.m Iy =500N.m I3 = 300N m L= 300 mm, Ly = 200 mm, b= 30
6FPa}

_md*®  3.14x50°
" 32

Ty =—T,=-200 N.m

I =61328125mm*: r=25mm

Top=T,— T, =500—200=300N.m

T__I_G(p — ) z__T.r

I L o |
. —TBC'r—200'103X25—815MPa
TTUBC I 61328125 '
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Teo.r _ 300.10°x 25

g =epl = SOIE 2D 1223 MPa
Pep = Pac —Peo
r T Gg O T.L
S — = — =— j— _.@:—
ro1 L .G
3
oo = pe b 200107300 55109~ 0.0624
.G 61328125x90.10
3
Pop = eo e 300107x200 4 54109~ 0.0624
.G 61328125x90.10
Example 10

A steel wire having cross sectional area (2 mm?), figure (I-19). Is stretched by (200 N). Find the
|ateral strain produced in the wire. If modulus elasticity for steel is (210 GPA) and Poisson's ratio is

(0.233)7

Lateral
Strain

Longitudinal | >4 | Y A :’, Longitudinal
Straln A vy ’ ‘ Straln

Lateral
Strain

Figure 1-19: A steel wire
Solution

Given: {4=2mnf, F= 200N y = (1253 = 210 4}

o F F 200

= = g = = — 5 = 0.00048~ 4.8x10*
Acg. A E 210" x210.10

E —

glongitudir‘al

glateral

C o= o g = A&, =0.233x0.00048=0.000112~1.12x10"

glongitudiral

95
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6.6. Shear Force and Bending Moment Diagram

The maximum absolute value of the shear force and the bending moment of the beams with regard
to the relative load can be determined using the shear force and bending moment diagram in
beams.

Before we can design the Shear force and bending moment diagram, we must first understand the
various types of beams and |oads, as well as the reaction forces acting on them.

According to the right or left of the section, the bending moment is the algebraic sum of all the
moment of forces. It is the reaction that is induced in a structural element as a result of an
external force or moment.

The moment caused by external forces is balanced in the equilibrium position by the couple induced
by the internal load; this internal couple is known as a bending moment.

Type of Beams
a. Cantilever Beam
b. Simply Supported Beam
c. Overhanging Beam
d. Continuous Beam
e. Fixed ended Beam

f. Cantilever, Simply Supported Beam

I (a) Cantilever E (b) Sumply supported

_— & & = &

(¢) Overhanging (d) continuous

I ¢) Fixed ended I I

( () Cantilever, simply supported

I
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Type of Loads

The applied weight is normally vertical, whereas the beam is usually horizontal.

Concentrated or Point Load: Act at a point.

Uniformly Distributed Load: The load is evenly distributed along the length of the Beam.

Uniformly Varying Load: Load distribution along the length of the beam, and rate of varying loading
from point to point.

PoinT LoaD

UNIFORMLY
DISTRIBUTED
LoaD

TRIANGULAR
DISTRIBUTED
LoaD

TRAPEZOIDALLY
DISTRIBUTED
LoaDp

PoINT
MOMENT

Loap Tyre

ErrecTIVE FORCE
AT LoaDp CENTROID

h-ﬁm

wl

LY

" L3 yvwlf2
0
h-’

Ib"

L(w +2w J L(w4+w5)
(w +w,) 5

i — M,
|« ] |«
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Sign Convention of Shear Force:

Shear force is an imbalanced vertical force that causes one end of the beam to move farward or
downward in relation to the other.

When the left-hand portion of a section tends to slide upward and the right-hand half tends to slide
downward, the shear force is deemed positive.

When the left-hand portion of a section tends to slide downward, or the right-hand portion tends to
slide upward, the shear force at that section is negative.

Shear Force Diagram (SFD)

A shear force which tends to rotate
the beam in clockwise direction is
positive and vice versa

* A shear force (SF) 1s defined as the
algebraic sum of all the vertical forces,
either to the left or to the right hand

side of the section — Right of section
i=— Section

Shear Force Diagram: i1s graph B
connecting Shear Forces at various i
) 1 Negative force
locations on the beam. :
|
|

Sign Convention

ﬁ. 1
— PR

Positive S.F. Negative S.F.

Sign Convention for Bending Moment:

When the bending moment at a section tends to bend the beam at a point to curvature with a
concavity at the top, or when the moments are operating clockwise to the left or anti-clockwise to
the right, we consider it positive.

I
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On the other hand, the bending moment at a section is deemed negative when it tends to bend the
beam at a point to curvature with convexity at the top or when moments are taken in an anti-
clockwise or clockwise manner.

Positive bending moments are sometimes referred to as sagging moments, whereas negative
bending moments are referred to as hogging moments.

Bending Moment Diagram (BMD)

* A bending moment (BM) 1s defined as the algebraic Wl ¥
sum of the moments of all the forces either to the —
lett or to the right of a section. A Bi c
| ——
* BMD: Diagram is graph connecting bending X wi2
moments at various locations 1 X

M,
C
Section I— Secton
i‘/ (+) M= Wx ) B W/2
i C |-R/eacnon )— Load L ¢
x w

@) (b)

Sign Convention

Y &

Positive Bending Moment Negative Bending Moment

Shear Force and Bending Moment Diagram Drawing Instructions

- The ordinates in SFD and BMD diagrams are shear force or bending moment, and the
abscissa is the length of the beam.

- Take a look at the [eft or right side of the section.
- [n one of the portions, add the forces (including reactions) normal to the beam.

- The force acting downhill is positive, whereas the force acting upwards is negative if the
right portion of the section is chosen.
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The force acting downhill is negative, whereas the force acting upwards is positive if the
Left component of the section is chosen.

Shear force and Bending moment positive values are plotted above the baseline. while
negative values are plotted below the baseline.

- The sheer force diagram will suddenly increase or decrease. |.e., at a segment where there
is a vertical point load, by a vertical straight line.

Between any two vertical weights, the shear force will be constant. As a result, the
horizontal shear force between the two vertical [oads will exist.

- At the two ends of a simply supported beam and at the free end of a cantilever, the bending
moment will be zero.

Shear Force and Bending Moment

Constant
Load : - ¢ *
| et | o - |
e - wi
‘ Constant | Constant Linear
Shear
| — — | . e
| Linear | Linear | Parabolic L e e e
Moment ‘ q “wn v E
0 Constant | Linear 4 ¢ =y 14 S ﬁ
o P | el - i
":“_HJ i oed] o '_l Shear force diagram
Constant Linear Parabolic
Shear - B ) ol c
Linear | Parabolic | Cubic “I‘
Moment C
. A A e —

I
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Example .

Draw shear force and bending moment of a simply supported beam (AB) shown in figure,
of span (2.9 m) is carrying two point loads as.

2 kN 4 kN

- 2.5m
Salution:
|. Reactions
~, IM, =0
2X14+4%x15—-—Rgx25=0
RB=2><1+4><1.5= 8 — 32 KN
2.5 2.5
~, XMg = 0
4%x142X15—Ryx25=0
RA=4><1+2><1.5= 7 — 28 KN
2.5 2.5
Or
ZF, = 0

RA—2—4+RB=O
Ry=2+4—-32=28KN
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2. Shear force diagram:
YF, = 2.8 KN
YFc =2.8—2 = 0.8 KN
XFp=28—-2—-4=-3.2KN
XFp=28—-2—-4+32=0KN
3. Bending moment:
M, = 0 KN.m
SMc=28x%x1=28KN.m
SMp =2.8X1.5—2x0.5=32KN.m
IMg=28%Xx25—-2%Xx15—-4X1=0KN.m

2 kN 4 kN
C D
(a) A *H
| : A 32KN
2.8 kN |« 1 m g - I m -
| |
1 S s
| :
| :
28 O 0.8 5]
(b) o : - -
|
i i ©, 3.2
| 1 . |
i 2_3! 32 | T
(c) ' ' B
4 C D

Or. Emad Toma Karash
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Example 2.

Draw shear force and bending moment of a simply supported beam (AB) shown in figure,
of span (a m) is carrying two point |oads as.

10 kMN/m

L Ly
A*ﬂ
e 1 m ,_I 2 m I 2 m

- 5 m -
Solution:
|. Reactions
10X2X2—RgXx5=0
R _10><2><2_40_8KN
BT 5 T 57
10X2X3—-Ryx5=0
10x2x%x3
Ry = =12 KN
5
Or
IF, =0

Ry,—10X2+Rp =0
Ry=20—8=12KN
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2. Shear force diagram:
S.F. atpoint A = 12 KN
S.F. atpoint C = 12 KN
S.F. atpointD =12 —-10 X 2 = —8 KN
S.F. atpointA=12—-10Xx2+8=0KN
3. Bending moment:
B.M. atpoint A= 0KN.m
B.M. atpointC =12Xx1=12KN.m
B.M. atpoint D =12xXx3—-2X10xXx1 =16 KN.m
B.M. atpoint B=12X5—-10X2X3=0KN.m
We follow the following steps to find bending moment at paint (M):

From the figure of shear force:

+ 3
12 {4—}12< 2-x
c

( h} | ! D B
| I
Cox ° S

A
S.F. atpointM = 0 KN

-

-

X 2—Xx

12 8
8x=24—-12x

_24_12
X_ZO_ 2m

I
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The bending moment: B. M. at point M

19.2 KN.m

1.2

B.M. atpoint B =12x (1+12) - 10x 12 x —

16
D

10 kN/m

Or. Emad Toma Karash

105



Example 3.

Draw shear force and bending moment of a simply supported beam (AR) shown in figure,
of span (1 m) is carrying two point loads as.

8000 N 4000 N
1000 N/m 1600 N/m
4 M E
- C D B
Sm—= 25m | 5 m - 25m |—
Solution:
|. Reactions

1000 x 5% 2.5+8000x5+400x%x7.5—Rgx125+1600x%2.5x%x13.75=0
~ 1000 x 5 x 2.5+ 8000 X 5+ 4000 x 7.5 + 1600 x 2.5 X 13.75

Rp =
B 12.5
137500 11000 N
125
XF, =0

Rp — 1000 x 5 —8000 — 4000 + Rg — 1600 x 2.5=0
Ra = 1000 x 5 + 8000 + 4000 — 11000 + 1600 x 2.5 = 10000N

2. Shear force diagram:
S.F. atpointA = 10000 N
S.F. atpoint C = 10000 — 1000 x 5 — 8000 = —=3000 N
S.F. atpointD = 10000 — 1000 X 5 — 8000 — 4000 = —=7000 N
S.F. atpoint B = 10000 — 1000 x 5 — 8000 — 4000 + 11000 = 4000 N

S.F. atpoint B = 10000 — 1000 x 5 —8000 — 4000 + 11000 — 1600 X 2.5 =0N

I
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3. Bending moment:
B.M. at point A = 0 KN.m
B.M. at point C = 10000 x5 —1000Xx 5% 2.5=37500N.m
B.M. at point D = 10000 X 7.5 — 1000 x 5x 5 —8000 x 2.5 = 30000 N.m

B.M. at point B = 10000 x 12.5 —-1000 x5 x 10 — 8000 x 7.5 —4000 X 5
= —5000N.m

B.M. atpoint E=0N.m

1000 N/m MEON R 1600 N/m
@ 4 Mf
C D B ’
- m J m I m m
l°‘|>00 5 : 25 :[- 5 |1ojoo 25 |-—
il 200 | o
®) —l—' @ c [I) 4 @ “ E
A: B :
5 o © i
E | | 7000 E
: 37500 ! : |
' i 30000 | |
A | i |
© 44 : : nt_B: 'E
To locate the point (p) of contra flexure:
y _5-V
30000 5000
5000y = 150000 — 30000 y
_ 150000 _
Y= 35000 7™

I
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Example 4.

Draw shear force and bending moment of a simply supported beam (AB) shown in figure,
of span (4 m) is carrying two point |oads as.

4.5 kN/m

Salution:
|. Reactions
~, IM, = 0
45X4%x2—-—Rgx3=0

45x4x2 36
Rp = 3 ~ 3

=12 KN

35X3X15—-RyXx3+45%x1x05=0

35xXx3x154+45%x1x0.5
Ry = 3 =6 KN

XF, = 0
Ry—45X4+Rp =0
Ry,=18—-12=6KN
2. Shear force diagram:

S.F. atpoint A = 6 KN
S.F. after pointB=6 —4.5x3 = —-7.5KN
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S.F. atpointB=6—-45%x3+ 12 =45KN
S.F. atpointC=6Xx4—-45%x4+12=0KN
3. Bending moment:
B.M. atpoint A= 0KN.m
B.M. atpoint B=6X3—-45%Xx3Xx15=—-225KN.m
B.M. atpoint C = 0KN.m
We follow the following steps to find bending moment at point (M):

From the figure of shear force:

T : 4.5 |
6 o ‘ )
v M Bl © C
(b) : : f }
i g X G © 75 :
i E |1 i
S.F. atpointM = 0 KN
X 3—x
6 7.5
75x=18—-6x
=——=1.33
*T 135 m

The bending moment: B. M. at point M

1.33
B.M. atpoint B=6 X% 1.33 —4.5x 1.33 XTZ 4 KN.m
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g 5\
n O - /©
. " % -l a |0\
m | = o M
=+
E
g
" >
<+ ©
g
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-
®
¥ m . . X
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-
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O
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Z =0
2

6y —2.25y%2 =0

0
y(6—225y) =0

© 47
225 ~°/m

SMp

RA-Y — 45X y.

y

To locate the point (p) of contra flexure:

110



Solve Question

Home Work



1.7. Chapter Questions
8. If the magnitude of the resultant force is to be (3 KN) directed along the positive x
- axis, determine the magnitude of force (T) acting on the eyebaolt and its angle.

:

8 kN

Solution

The parallelogram law of addition and the triangular rule are shown in figures (a & b), respectively.

R = \/Ff + FZ — 2F; F,cosH

T=182+92—2x8X9 X cos45 = 6.57 KN

Appling the law of sine's to figure b. and using this result yield:
R F _F
sinf  sinf  sina

6.57 8 9
sin45°  sin(90° — )  sin®
657 9
sin45°  sin®
g — 9 sin45°% 0.968

sin@ = ——-—=0.

@ = sin"1(0.968) = 75.47°
90° — 9 =180 — 75.47 — 45
90° — 6 =119.5
6 =119.5 —-90 = 29.5°

I
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9. It is required that the resultant force acting on the eyebolt in Figure be directed
along the positive axis and that (FZ) have a minimum magnitude. Determine this
magnitude. the angle (@), and the corresponding resultant force.

F, = 800N

Solution

F5 is @ minimum or the shortest length when its line of action is perpendicular to the line of action of Fp, that is,
when: 8 = 90

800 Fq F,

sin90° - sin30° - sin60°
800 B Fy _ F,
1 05 0.866
Fr =800x%x05=400N

F, =800 x 0.866 = 692.8 N

{Results: 8 = 90 ; Fr = 400 N ; F, = 693 N}

I
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0. If (6 =30)and (T = 6 KN), determine the magnitude of the resultant force acting on the eyebalt
and its direction measured clockwise from the positive x axis (@).

8 kN

Solution

B kn

8 K
The parallelogram law of addition and the triangular rule are shown in figures (a & b), respectively.

R = \/Ff + F2 — 2F; F,cos0

R=+62+82—2x6x8Xxcos75° = 8.67 KN

Appling the law of sine's to figure b. and using this result yield:
R F K
sinf  sinf  sina

8.67 8 6
sin75°  sina sinfs
_ 8 sin75°
sina = 867 0.891
a = sin"1(0.891) = 63°
_ 6 sin75°
sinf = Y 0.668

B = sin"1(0.668) = 42°
®=a—60°=63°—60°=3°

{Results: Fr = 8.67 KN ; & = 63.05 ; @ = 3.05}

I
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[l. Determine the magnitude of the resultant force acting on the bracket and its direction measured
counterclockwise from the positive u axis.

F,=1501b

v

u

Solution

The parallelogram law of addition and the triangular rule are shown in figures (a & b), respectively.

R = \/Ff + F2 — 2F; F,cos0

R = \/2002 + 1502 — 2 x 200 x 150 X cos759 = 216.72 N
Appling the law of sine's to figure b. and using this result yield:
R F K
sind  sinf  sina
216.72 200 _ 150

sin75° sina  sinf

, 200 sin75°

Sina = W = 0.891
a = sin"1(0.891) = 63°
_ 150 sin75°

Slnﬂ = 216—72 = 0.668

B = sin"1(0.668) = 42°
P =a—60°=063°—-60°=3°

{Results: Fr = 217 N ; @ = 63.05 ; @ = 3.05}

I
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2. If (F, = 600 N) and (@ = 30) , determine the magnitude of the resultant force acting on the
eyebolt and its direction measured clockwise from the positive x axis

'¥
\i
b
3 F>=500N

F;=450N
Solution
0 =tan"!- = 36.87°
JF JF
M Description x Y
g ) )
1. 600 L30° 600 cos30° =519.6 600sin 30° = 300
2. 450 1.233.13° | 450 c0s233.13° = —-270 450sin 233.13° = —353.83
3. 500L300° 500 cos 300° = 250 500sin300° = —433.01
Sum 4996 -486.84

R= |ZF%+ ZF2 =,/(499.6)% + (—486.84)2 = 697.58 N

0t ‘I(Fy)—t _1(486.84)_44 26°
RV e ST R

{Results: Fr = 701.91 N ; 6 = 44.06 }

[3. The force (F = 450 N) acts on the frame. Resolve this force into components acting along members AB
and AC , and determine the magnitude of each component.

I
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Solution

AC

¢
#
s
’
0 d
’
300
’
¢
’

105°

450N | 450 Fs

-
’
,
’
rl
’

B 450N \ o

Appling the law of sine’s to find (F4g & Fy4c):

R Fap _ Fu

sin@  sina  sinf

450 Fip Fyc

sin30°  sin105°  sin45°

B 450 sin105° 86933 N
AB ™ gin300 7
B 450 sin45° 6364 N
ACT sin300 '

{Results: Fug = 869 N ; Fyc = 636 N }

I
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4. If the tension in the cable is 400 N, determine the magnitude and direction of the resultant force acting
on the pulley. This angle is the same angle of line AB on the tailboard block.

400N

Solution

400 N

400N 400 N

R = /4002 + 4002 — 2 X 400 x 400 X cos(60°) = 400 N

From sine law:

R Fap _ Fac

sina  sinf sinf

400 400 400

sin60°  sinf sinf

g0 — 400sin 60° 0.866
sin 8° = 200 = 0.
0° = 60°
__400sin60° 0.866
sinf = 200 = 0.
B = 60°

I
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2. 7. Chapter Questions

[. A 400N force is applied to the frame and © = 20°, as in the following figure. Find the
moment of the force at A?

F=400N
’—"-“f'-‘ = e~ §
J |
i
AL s
Solution:
F=400N
%
F, = 400 cos20° € R ‘
Y demieiel R4
y = 400 sin 20
A I%— !
3m o

U +Mg = XF.d
U + Mg = —400 cos20° X 2 — 400 sin20° x 3 = —751.75 — 410.42

=—1162.17N.m = 1162.17N.m O

{Answer: Mg = 1160 N.m}
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2. The wrench shown is used to turn drilling pipe. If a torque (moment) of (800 N.m) about

point (p) is needed to turn the pipe, determine the required force (F).

Solution:

30°

6 cmT

F, = F cos30°
F

30°

6 cmT

F, = F sin30°

U+M, = £F.d

U+M,=F sin30° x 0.06 + F cos30° x 0.43

800 =0.03F +0.372F

F= 800 _ 1990 N
T 0.402

{Answer: F = 1990 N}

3. Calculate the moment about the base point (0) of the (E00 N)?

120

2 m
A

ZaN

600 N

||

Wg
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Solution:

F, = 600 cos 40°

4m 600 N
F, = 600 sin40°

A

Q

U+M, = XF.d
U + Mg = 600 .c0s40° X 4 + 600.sin40° x 2
U + Mg = 1838.51 +771.35 = 2609.86 N.m U

{Answer: M, = 2610 N.m}

4 Determine the resultant moment acting on the beam?

400 N 400 N

200N

" [02m
200 N

300N

Solution:

U+M, = ZF.d
U 4+ M, = —400 X 2 + 300 X 5 + 200 X 0.2
U + M, =800 + 1500 + 40 = 740 N.m U

{Answer: Mcoypre = 740 N.m U}
0. Determine the magnitude of (F), so that the resultant moment acting on the beam is (1.0

kN.m) clockwise.?

/\i

09m ﬂ
2kN

Solution:

U +M, = ZF.d
15=Fx09—2x03
15406

= 2.333KN
0.9

{Answer: F = 2.333 KN}
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B. Determine the resultant moment of the three forces and one couple which act on the plate

shown about point (0)7

60N : |
\ 50 N |
7 |_—r _____ )140Nm
2m | ]
[ |
2m
40N L
Im

Solution:

F, = 60 sin45?

|

2

60N HHe—5m *
0N |

Fy = 60 cos 45° 3 = * B |

<71 _r _____ ) 140 Nm

m

7 IS

m
40N—i—)...|.__.__.__.__gl s oo
1m

U+M, = ZF.d
U4+ Mg = —140 + 50 X 5 — 60 .cos45° X 4 + 60.sin45° x 7 — 40 x 0
U 4+ Mg = —140 + 250 — 169.7 + 296.98 — 0 = 237.28 N.m U

3

N

{Answer:: M, = 237.28 N.m U}

7. Find the equivalent force couple system about point A for the set of forces shown below?

SON m———>1 ) 100 Nm
N

Solution:
XF,=50N
LF,=-40-60=—-100N

U+M, = XF.d
U 4+ M, =500 x 1.5 — 100 + 40 X 0.5 + 60 X 2

U+My=75-100+20+120= 115N.m U

Foqu = [50,—100] N

{Answer:: My, = 115 N.m O}

I
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3.B. Chapter Questions

|. Determine the magnitudes of the forces C and T, which, along with the other three forces shown,
act on the bridge-truss joint?

Solution I (scalar algebra). For the x-y axes as shown we have

[XF, = 0] 8 + Tcos40°+ Csin 20°— 16 =0
0.766T + 0.342C = 8

[ZF, = 0] Tsin40° —Ccos20° -3 =0
0.643T — 0.940C = 3

Simultaneous solution of Egs. (a) and (b) produces

T =9.09 kN C = 3.03kN

{Answer: T = 9.09 KN ,C = 3.03 KN}

123
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2. Determine the magnitudes of the forces C and T, which, along with the other three forces shown,

act on the bridge-truss joint?

T

7o

30°

Solution:
T

\
g t l. tTc
) g

M,=0
T,.r—T,. =0
Xk, =0
T, +T, —1000 =0
T, =T,=500N

T3
T3=T4=?=500N

T =T, =500N
{Answer: F = 250 N}

I
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3. The uniform (100 kg) |-beam is supported initially by its end rollers on the horizontal surface at A
and B. By means of the cable at C it is desired to elevate end B to a position (3 m) above end A.
Determine the required tension P, the reaction at A, and the angle made by the beam with the
horizontal in the elevated position.

P~
i
I|
z
6 m Cy 2m
AE 3)B
Solution
P
?a‘“ \\] i
y 2% O~
A m / 3m
Afe =08 100 (9.81) N Yoo

Moment equilibrium about A eliminates force R and gives

IM, =0 P(6 cos 0) - 981( 4 cos 8) =0 P=654N
Equilibrium of vertical forces requires

XF,=0 654 +R-981=0 R=327N

The angle 6 depends only on the specified geometry and is

sin 6 = 3/8 0=27

{Answer: P = 654 N , 6 = 22°}
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4. Each box weighs 40 N. The angles are measured relative to the horizontal. The surfaces are
smooth. Determine the tension in the rope A and the normal force exerted on box B by the inclined

surface?

126

The free-body diagrams are shown. The equilibrium equations for box D are

ZFI - (40 N)sin20°— T¢ c0s25° = 0

Z Fy:Np— (40 N)cos20° + T¢sin25° =0

The equilibrium equations for box B are

Z F,:(40N)sin70°+ Tccos25° — T4 =0

D Fy:Np— (40 N)cos70° + Tesin25° =0

Solving these four equations yields:
TA=512N,Tc=151N,Ng=730N,Ny=312N

Thus Tp=51.2N,NB=7.30 N.

{Answer: Ty =51.2 N , Ng =7.03 N}
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3. The construction worker exerts a 30 N force on the rope to hold the crate in equilibrium in the
position shown. What is the weight of the crate?

00
90 N

\ 24

The free-body diagram is shown. The equilibrium equations for the part of the rope
system where the three ropes are joined are

ZFI (90 N)cos 30°— Tsin5° =0

z Fy:—(90 N)sin30°+ T cos5" — W =0

Solving yields W =935.9 N.

{Answer: W = 935.9 N}
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E. The 100 kg mass is suspended from three cables. Cable AC is equipped with a turnbuckle so that
its tension can be adjusted and a strain gauge that allows its tension to be measured. If the tension
in cable AB is 200 N, what are the tensions in cables AB and AD?

|——D.4 m—==0.4 m-+— 0.48 m—-|

Solution:

|-0.4 m—=}=-0.4 m-|-— 0.48 m—-|

.4531
064m

192.2 N

Tye = 40 N

64) = 57.99°
4 - "

0, = tan™?!

0; = tan™?!

6.4

0, = tan~1 (T) = 57.99°
— | = 36.03°
(8.8)

SE, =0
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sin57.99° = 0.848 ; c¢0s57.99° = 0.531
sin36.03° = 0.588 ; cos36.03° = 0.809
—T4p.c0501 + Ty..co0s0, + Typ.cos0; =0

—106 + 0.53 Ty + 0.81 T,p = 0

106 — 0.81 Typ,
Tac = 0.53

SF, =0

(1)

Tyg.Sin0, + Ty..sinl, + Typ.sinf; — 981 =0
169.6 + 0.848 Ty + 0.588 T4,p — 981 =0 (2)

Substituting the first equation with the second equation results:

106 — 0.81 Typ
0.53

169.6 + 1.6 (106 — 0.81 T;p) + 0.588 T,p — 981 = 0
169.6 + 169.6 — 0.81 Typ + 0.588 T,p — 981 = 0

169.6 + 0.848 ( )+ 0.588 T,p — 981 = 0 )

1.6 (21.2 + 0.81 T,p) + 0.588 T,p — 196.2 = 0

33.92 + 1.296 T, + 21.2 + 0.81 Typ — 1962 = 0

T, = 128.36

1.884

Substituting the value of ( T,p) into the equation (1) to obtain the value of ( T, ) results in:

21.2 + 0.81(68.13)
Tap = 0.53

= 68.13 N

= 144.14 N

{Answer: T yp = 144.1 N , T,p = 68.2 N}
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7. A heavy rope used as a mooring line for a cruise ship sags as shown. If the mass of the rope is
90 kg, what are the tensions in the rope at A and B?

Solution:

TAy = TA sinb5°

Tﬂ'y = TE’ sin40°

..... TB
Ta, = Ta cos55% 40°
Ty, =Tg COS‘;‘DO

882.9N
SE, =0
Tg cos40° — T, cos55° =0
0.766 Ty — 0.575T, =0

0.575T,
T8 = 5766
Tg = 0.751 Ty (D)
SF, =0
Tg sin40° + T, sin55° —882.9 = 0
0.643 T + 0.819 T, — 882.9 = 0 2)

Substituting the first equation with the second equation results:
0.643 (0.751T,) +0.819T, —8829=0
882.9
= 1302
Substituting the value of ( T) inta the equation (1) to obtain the value of ( Tg) results in:
Tz = 0.751 (678.11) = 509.26 N

= 678.11N

{Answer: Ty, = 679 N , Ty = 508 N}
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4.8 Chapter Questions
0; Locate the centroid of the area shown in the figure below?

Y
A
90 mm
i j 20 mm
120 mm 7 x“1:“ $ :j S -
¥ L 20 mm
60 mm
/ o X
Solution
Part Area, A, Xi yi XA, yiA
1 10,800 450 120.0 486,000 1,296,000
P 2,700 30.0 40.0 81,000 108,000
3 - 2,510 73.0 120.0 - 183,000 - 301,000
Totals 10,990 384,000 1,103,000

_ Ix.A; 384000 _ Zy.A; 110300

00.4 mm

_ - — 3494 mm, = =1
=Y 10990 mm, Yo =Ty 10990
Y
i
c |
¥ 1 ..\\\...,
100.4 mm ol
.”/

L X

| 34.9 mm

{Answer: x; = 34.9 mm ,and y. = 100.4 mm}
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0y: Locate the centroid of the area shown in the figure below?

Solution

shape _|A (mm’) li (mm) _[%A (mm’) h(mmj JA (mm’) X = 2159218mm’ =929mm
A 20000 100{ 2000000 s0[ 1000000 23245 58mm?
B -2827.43 150 -424115 50| W32 ygnes1o o’
c -3926.99| 21.22066| -83333.3 50| -196350 Y=m=85-8m
D 10000| 66.66667| 666666.7| 133.3333| 1333333 :

23245,58 2159218 1995612

_ Ix.A; 2159218

Xc = = =

A 2324558 J289mm,y. =

A " 2324558 o>85mm

{Answer: x; = 92.9 mm ,and y. = 85.8 mm}
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05: Locate the centroid of the depicted area with a rectangular cutout. The measurements are

given in meter?

Solution

T
2
1 1
f——— ]
3 1 1 2
1AY
I |II - |:|
111

The calculation is conveniently done by using a table.

Segment A; (m?) x;(m)  x;.A4;(m3)| y; (m) |Yi-Ai (m®)

| [0 3.33 33.3 3.38 33.3

Il 4 .67 27 b8 3.38 13.32

[l 4 3.0 43 I 4

IV -2 3.0 -1 2 -4

Sum 2 97.98 06.62
Thus, we obtain:

Xc = = =377Tm, ye=——=——=218m

133

A

26

Answer: x; = 3.77m ,and y, = 2.18 m }
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0,: A wire with constant thickness is deformed into the depicted figure. The measurements are

given in mm. Find the Locate of the centroid?

40 mm
80 mm
30 mm
Solution
Y
7
i 40 mm
i 80 mm
i 30 mm

_Zx;.L; 30x15+80x30+40x50+80X70+30x85

_ =50
=Ty, 30 + 80 + 40 + 80 + 30 mm

_ Ty;.L; 8040+ 40 X 80 + 80 X 40
Ye =5 L, 30+80+40+80+30

= 36.92mm

Answer:x. = 50 mm, y. = 36.92 mm }
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Os: A thin sheet with constant thickness and density, consisting of a square

and two triangles, is bent to the depicted figure (measurements in meter). Locate the center of

gravity?

T

3

| ,_
Solution

The body is composed by three parts with already known location of centers of mass. The
|ocation of the center of mass of the complete system can be determined from
_ sz’-'rilfti L yo = Z,Oiyivi e — ZPiZiVi ‘

> piV VA 2. piV;
Since  the thickness and the density of the sheet is constant, these terms
cancel out and we obtain:

Ic

T Ay i A zi Vi
I():Z —, y(_r:%:ydl , ZCZZZ::/L .

The total area is:
1 1
A=2Ai=4><4+§><4x3+§><4><3=28m2

Calculating the first area moments of the total system about each axis,
in each case one first moment of a subsystem drops out because of zero
distance: x;; = 0, y;; = 0,and z; = 0. Thus, we obtain:

2
_ X Ap+xp Ay _ 2x16+ (EX 4) x 6

Xc = 2 28 =1.71m,
_y,.A,+y.Am_2><16+2><6_157
Yc = 2 = 28 =1.57m
1 1
Zi Ay + Zp. A (zXx3)xX6+(;X3)X6
_Z11- A4y n-Anr _ 33 3 — 043 m

“c = A 28

{Answer: xo = 1.71m, y. = 1.57,and z; = 0.43 m }
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Og: Locate the centroid of the area shown in the figure below, all dimension in m?

12 g

3 9
Solution
1 L
: R
Segment A;(m*) | x; (m) xi . A; (m?) |y;(m) | y;.A; (m3)
I 120 B 720 i) 500
9 30 4 4200 3.83 100
9 1414 B -84.8 1.273 -8
4 8 Vi -96 4 32
Surm 12719 959 6al
Thus, we obtain:
_ in'Ai 959 _ 50 _ ZylAl _ 650 _ 5 08
xe = OV, Ye =T T 79 0T

A 1279
{Answer: xo = 7.5m ,and y, = 5.08 m }
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[5: Find the Locate of the centroid of the area shown in the figure below, by using integration?

y=23—-x)

T e T T IO T DUTOICTOTT
Given:
y=2(3-x)
Find:
Centroid of area under curve
Solution:
Define element

dA = ydx

Define integrals & solve

_ [,®dA [xydx [, x2B-x)dx [ (6x —2x?)dx
X =— = - — — 3
J,dA j': ydx _l'“{ 2(3 —x)dx J, (6 — 2x) dx

9
=—==1m
9
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gy GaY SSabmell

Given:

y=2(3-x)
Find:

Centroid of area under curve
Solution:

Define element

dA = ydx

Define integrals & solve

~ 3y 32(3 —x — X 3 -
[,y dA - Js 5y dx ft:H(TJ *2(3 —x)dx - J, (18 — 12x + 2x?) dx

Y =7 3 -
), dA Jy ydx A[“( 2(3 —=x)dx j":((a — 2x)dx

Example Problem Solution

Given:

.1.| — A K x .J

Find:
x & y of area
under the curve

{Answer: xo = 1m ,and yo =2 m}
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9. Chapter Questions

[, Determine the moment of inertia of the section relative to the x-axis?

l H-usm—ﬂ
02m 1
0.6m 2
0.2m 3 | | i
v
e 06m—
Solution:
A=w.L
1 I I
Ixoabh3:kx=\/; :kyz\/;
Part A dx dy | Add | ALdY Ixg lyg
() (m) (mm) (m') (m') (m') (m')
I 0.16 I 0.9 I 0.1298 0.00053 | 0.00853
i 0.1 I 0.5 I 0.03 0.0036 0.0004
3 0.12 I 0.l I 0.0012 0.0004 0.0036
h) 0.4 I 0.1608 0.00453 |  0.01253

I, =2l + ZA .d} = 0.00453 + 0.1608 =0.1733 m* = 173.3 (10%) mm*
I, = 2L, + ZA.d% = 0.01253 + 0 = 0.01253 m* = 125.3 (10%) mm*

k, = b _ 0'1733—043325 = 433.25
x= 7= oz O m = 25 mm

= I _ 0.01253_0177 _ 177
y= |7~ oa 0 m = mm

139
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0,: Determine the moment of inertia of the section relative to the x-axis?

¥
| 2\
- 20 mm
A !
\_ x
: 2 ¥i0 mm A) I, = 6.0(10°) mm*
B) I, = 9.0 (10°) mm*
-— 120mm ——-» C) 1, =12.0(10% mm?*
D) I, = 15.0 (10%) mm*
Solution:
A=w.L ; A=m.1*; x=0.424r
I, =—bh I, =1I, = ’Z—T P 1y, = 0100874 1, = ’%4
Part A dx dy A | OALdy g Iy
(mm’) | (m) | (mm) (m") (m") (m") (m")
I 5600 GO 0 34360000 I 0120000 | 138240000
i Zalh 4 [36.96 I 4716a219.8 I 005760 | 281088
3 -12572 120 0 -18103680 I -125720 -125720
) [0857.2 63621539.8 I 6000040 | 138395368

140

I, = Sl + ZA.d% = 6000040 + 0 = 6 (10°) mm*
I, = I, + XA .d2 = 138395368 + 63621539.8 = 202.02 (10%) mm*

Y —
A

41__::1‘1_1:_1

6000040 _ .
10857.2 mm

202016907
10857.2

= 136.41 mm
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[s: Determine the moment of inertia of the shaded area with respect to the x - axis?

-—240mm—-'
7

r=90 mm

Solution:
A=w.L : A=mw.1>: x=0.424r

. d*
Yo 64

(92 -64)d*
; I, =—"———=0109871%;1, ="

_ 1,23, _
Ixo—12bh : Ixo—I =

Area Moments of Inertia

Example: Solution

Y SOLUTION:
» Compute the moments of inertia of the bounding

A ! A' . - -
T - ki rectangle and half-circle with respect to the x axis.
120 mm &
b=818mm Rectangle:

I, =1bh* =1(240)120) =138.2x10° mm*
Half-circle:

=38.2mm moment of inertia with respect to AA’,

Iy =i =17(90)* =25.76x10°mm*

LA _(4)%0)
3 kY4
b=120-a=81.8 mm

A=1m? =L17(90) )
e e I, =1, -Aa*=(25.76x10°)-(12.72x10° )38.2)}

=7.20x10° mm”*

Moment of inertia with respect to x’,

moment of inertia with respect to x,
I, =1,+Ab* =7.20x10° +(12.72x10° )81.8)’
=92.3x10° mm’

{Answer: I, = 92.3 X 10°m* }
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0,: Determine the moment of inertia of the area shown in the figure?

Yy

6 mm

24 mm

Solution:

SOLUTION 0
Y I,=(I,+4d),+, + AJ:E)E +(I, +4d.),
vy
| * — L 3 )
Aoy omm =[5 (O +(24x6)27)°],
8 mm —» |e— T 1 )
4 24 g +[=(8)48)° +0],
o' f 1% X 1 ; .
. (flc24¢mm +[5(48)(6)" +(48x6)(27)°]c
& & | Smm 1.=390x10° mm* <=
24mm 24 mm f
L9 mm 1mm ;
ks =\jf_t= 29019 =21.9mm{—=
A4 |[(24x6)+(8x48) +(48x6)]

0 0 0
I,=(,+ _iﬁff )+, + .if?f)ﬁ +(I, + .y@f}c

1 N DTS D
=[5 O LS U]+ (U8 L

A

[=643x10°mm* = £=\/ 643x10°
[

) (24x6) +(8x48) +(48x6)] =887mm =,

HAnswer: I, = 39 X 10* mm*
X
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Os: Determine the moments of inertia and the radius of gyration of the shaded area with respect to
the x and y axes and at the centroid axes?

y
}Lir:{l 1 cm
5cm
1 cm
| X
) 5cm i
Solution:
A=w.L
1,23 .75, _— /’x ) _ /Iy
1 cm }1 1 cm * Moments of inertia about centroid
- - 1, Ad,
L] 2 =145-(15)(2.5)°
5 em .P_T cG | » =5125cm"
b OR
35 7 |
T 3 2
1 cm X "1_ﬂ 5 .- I.\' - 2[{12 (1){5) +I:S>(]:]{1) ]
“ »| ' 1 3 5
5 cm ! +[(E{5)(l) +(5x1)(2)°]
Fy 4= 34 =51.25 cm®
7o 2[(3.5)(53=1)]+(0.5)(1x5) B 1 ) 1 )
- 3(5x1) I, =1, = A ()X +(5% 1)(2)3]+E(1>t5)=
=25cm _ 5125 emt®
* Moments of inertia about x axis
_ 1 3 2 1 3 — — I
I =2AS M6 +GxDE OO | _f - \E - _511-;5 —1.848cm
=145 cm*
AL

{Answer: I, = 145 cm* [, = 51.25 cm* , [, = 51.25 cm* K, = K,, = 1.848 cm}
L]

Or. Emad Toma Karash

143



Qg: : Determine the moment of inertia of the area and the radius of gyration shown in the figure?

g
3
8
3

=

1

Solution:
A=w.L ; A=m.r*; x=0.424r
AT = A1 + AZ - A3
bh wd? md?
= 2 8 4
= 100 x 100 N 3.143 x (100)?  3.143 x (50)?
L 2 8 4
A = 5000 — 3928.75 — 1964.375 = 89 mm?
1 3. _ _ md* ] _ (9m?-64)d® 4. _mrt
L,=5bh%: L,=1, == : I, =————=0.10987*;1, =~

72@
I | |

{Answer: I, = 10.47 x 10°® mm* }
I ————————————————
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[: Determine the moment of inertia of the shaded area with respect to the x - axis and y-axis?

1

.2
Y =50 %

¥

100 mm —-‘

y=god

{Answer: I, = 45.7 x 10° mm* , I, = 53 x 10°® mm*}
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05: Determine the moment of inertia of the shaded area with respect to the x - axis?

~—240mm—01
7

r=90 mm Z

120 mm
¢ e
X
Solution:
A=w.L : A=m.1*;
x=0.424r =38.16 mm
_ 1423, _ _ md* _ (9m?-64)d* _ 4. _
I, =bh%: I, =1, == ; I, =—=_===10109871%:1I, =
mrt
8
Part A dx dy | A.dd | ALdy g lyg
(m’) (m) (mm) (m') (m') (m') (m')

I 28800 20 il 864000 216000 | 34060000 | 138240000

2 | -234a8.3 | 120 Bl.84 | 1178406 | s48146.8 | -Z0770aZ8.Ta

) 33417 2042496 |  764146.8 8783471.25

I, =Xl + A .d} = 8783471.25 + 764146.8 =9547618 mm*
I, = 2L, + ZA.d% = 0.01253 + 0 = 0.01253 m* = 125.3 (10%) mm*

. I,  [0.1733
XA 0.4

I 0.01253
ky= Z= 04 =0.177m =177 mm

= 0.43325m = 433.25 mm

L]
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