Construction of Hot Asphalt Mix

3th Year, Civil Engineering

Ву

Dr. Ashraf El_Shahat

Faculty of Engineering, Zagazig University

Lecture 1

Production of Hot Mix Asphalt (HMA)

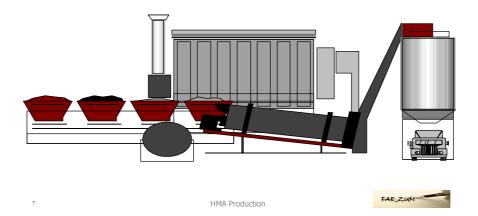
Dr. Ashraf El_Shahat FAE_ZUN

2011

HMA Production

Quality Control of Mix Production

Production



Placement

Compaction

Production

Objectives

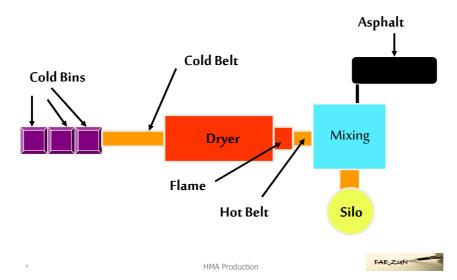
The production of good asphalt mix using the appropriate percent of aggregate and asphalt to achieve the required specifications

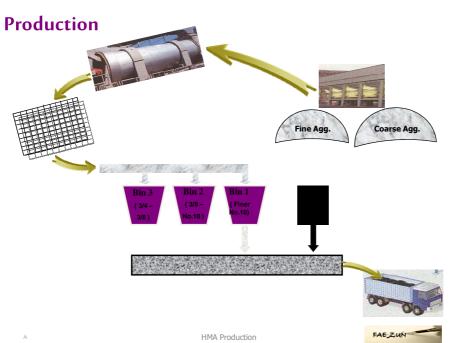
Hot Asphalt Mix Plant

Batch

Continuous

HMA Production



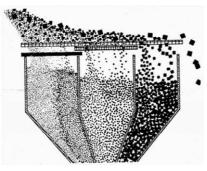

Batch versus Continuous Plants

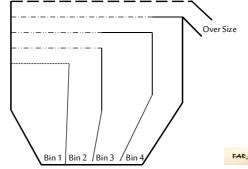
No	Item	Batch	Continuous
1	Calibration	By weight	By volume
2	Quality	Low	high
3	Production	Batch	Continuous
4	Projects	Medium and Small	Big
5	Cost	Low	High

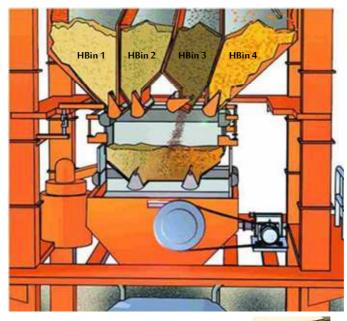
Batch Plant

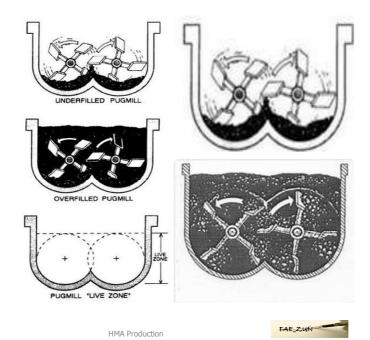
Batch Plant (Cold Bins)

Batch Plant (Dryer)

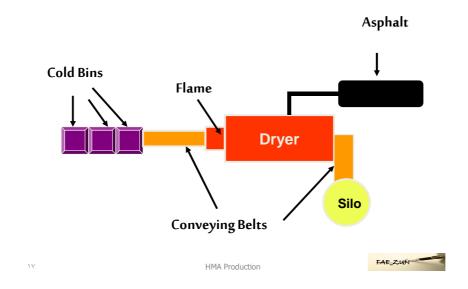

Batch Plant (Dryer)


Batch Plant

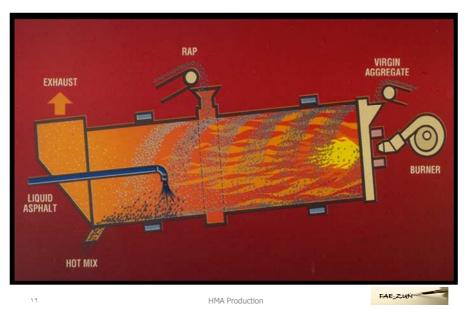

Sieves

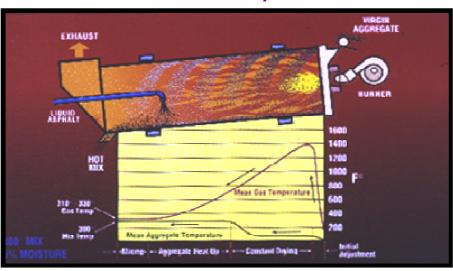

Sieve 1" Sieve 3/8" Sieve No 10 Sieve No 40

Aggregate Weighting


Mixing Unit


Control Unite


Continuous Plant


Continuous Plant

Continuous Plant

Continuous Plant (Temperature)

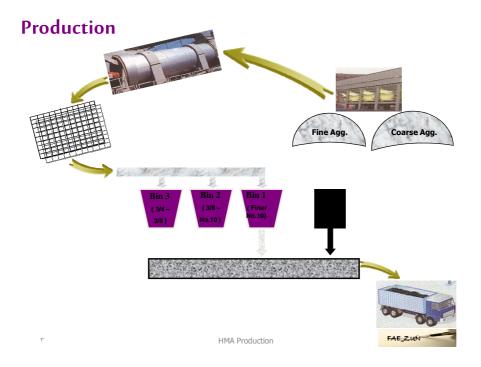
Lecture 2

Quality Control of HMA Production

Dr. Ashraf El_Shahat FAE_ZUN

2011

HMA Production


Objectives

The production of good asphalt mix using the appropriate percent of aggregate and asphalt to achieve the required specifications

HMA Production

FAE_ZUN

Blending of Aggregates

	B.N	No.1	B. N	No.2	B.N	lo.3	Combined	
	65	5%	25	5%	1()%	Aggregates	Specs (4C)
Sieve No.	Αν.	0.65	Αν.	0.25	Αν.	0.1		
1.5"	100	65	100	25	100	10	100	100
1"	100	65	100	25	100	10	100	100
3/4"	100	65	100	25	100	10	100	100
1/2"	88	57	100	25	100	10	92	80 - 100
3/8"	74	48	100	25	100	10	83	72 - 90
No. 4	49	32	100	25	100	10	67	52 - 72
No. 10	29	19	56	14	100	10	43	35 - 55
No. 40	11	7	19	5	100	10	22	12 - 30
No. 80	7	5	12	3	68	7	15	7 - 18
N0. 200	6	4	9	2	7	1	7	2 - 8

HMA Production 23/2/2011

Quality Control

- Dryer (Gradation, Temperature)
- Storage (Cold, Hot)
- Sieves (Size)
- Asphalt.
- Mixing (Temperature, Time)

HMA Production

FAE_ZUN

Dryer

Dryer

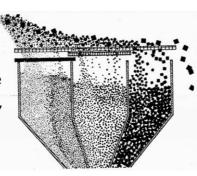
اسطوانة دائرية من الصلب يتراوح قطرها من ١-٣متر وطولها من ٥-١٢متر وتدور حول محورها بمعدل ٧-٨ لفه في الدقيقة بمحور مانل مع الافقي

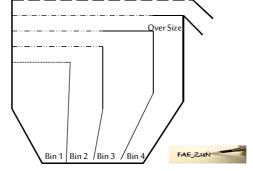
ملاحظات هامة في المحمصة

- مراقبة النسبة بين الوقود والهواء المستخدم لمنع تواجد حبيبات الكربون
 - مراعاة درجة الحرارة لنسبة الرطوبة بالركام

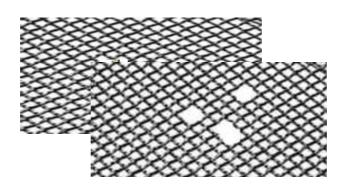
عناصر التحكم في تسخين الركام في المحمصة

- كمية اللهب
- زاوية ميل المحمصة
- سرعة دوران المحمصة


HMA Production

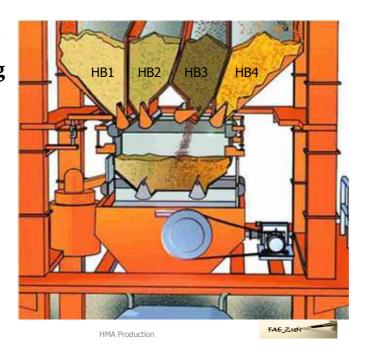


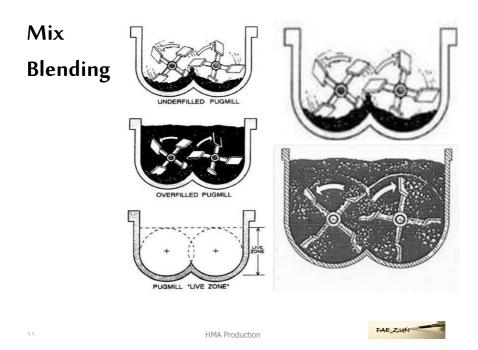
Sieves


No of hot bins depend on the available no of sieves inside the plant. The sketch show that there are three sieves 1", 3/8", No. 10 and No. 40 then there are three hot bins HB1, HB2, HB3, HB4

Sieve 1" Sieve 3/8" Sieve No 10 Sieve No 40

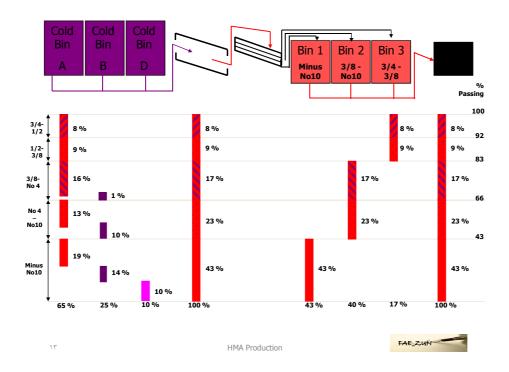
Sieves




يجب ان تكون فتحات المناخل نظيفة و لا يوجد اي قطع في فتحات المناخل ومن المهم التأكد من ذلك وخصوصاً المناخل الساخنة ويتم ذلك بأخذ عينة من كل قمع (Bin) واعادة نخلها مرة اخري على المناخل المحددة لهذا القمع للتأكد من عدم وجود اي قطع والتأكد من كفاءة عملية النخل.

HMA Production

Aggregate Weighting



Blending of Aggregate

Sieve Size	³ / ₄ Inch (65%)	3/8 Inch (25%)	Fine Sand (10%)	JMF	JMF Tolr	JMF Limits	SPECS Limits
¾ Inch	100	100	100	100		100	100
½ Inch	87.7	100	100	92		80-100	80-100
3/8 Inch	73.8	100	100	83	±4	79-87	72-90
No. 4	49.4	96	100	66	±4	62-70	52-72
No. 10	29.0	55.6	100	43	±3	40-46	35-55
No. 40	10.5	18.8	100	22	±3	19-25	12-30
No. 80	7.4	12	68.2	15	±3	12-18	7-18
No. 200	5.7	8.5	7.4	6	±2	4-8	2-8

FAE_ZUN

Example

- Blending Percent is 17%, 40%, 43%
- Batch Weight is 2000 kg/hr
- OAC is 5.2%
- Asphalt Weight = 2000* 0.052 = 104 kg
- Aggregate Weight = 2000 104 = 1896 kg

	%	Agg Wt	Accumulated Wt	Asphalt Wt
Bin 3	17	323	323	1
Bin 2	40	758	1081	ı
Bin 1	43	815	1896	-
Asphalt	-	104		104
	100	2000	1896	104

Extracting Test of HMA

	Sieve Size	JMF	JML	% Passing
Bin 3 (17)	3/4.	100	100	100
	1/2.	92	80-100	92.4
Bin 2 (40)	3/8.	83	79-87	83
	4	66	62-70	65
Bin 1 (43)	10	43	40-46	45
	40	22	19-25	35
	80	15	12-18	20
	200	6	4-8	12

بالنسبة للقمع رقم ": المار على المناخل (٣/٤ : ٣/٨) داخل حدود الخلط التصميمية (JMF).

بالنسبة للقمع رقم ٢: المار على المناخل (٣/٨: رقم١٠) داخل حدود الخلط التصميمية (JMF).

بالنسبة للقمع رقم ۱: المار على المناخل (رقم ٤٠)(رقم ٢٠٠)(رقم ٢٠٠) خارج حدود الخلط التصميمية (JMF) مما يعني أن التدرج ناعم مما يستلزم اضافة ركام خشن.

HMA Production

Extracting Test of HMA

من خلال نتائج الاستخلاص نجد ان نسبة المار من رقم ١٠ (٤٥٪) أكبر من (٤٣٪) مما يجب تصحيح هذه النسبة للحصول على نسبة الخلط الجديدة كما بالمعادلة التالية:

نسبة الخلط الجديدة = (٤٣/٤٥) * ٤١ = ٤١

فتكون النسب والأوزان الجديدة (١٧٪، ٤٢٪، ٤١٪) كما بالجدول التالي:-

	%	Agg Wt	Accumulated Wt	Asphalt Wt
Bin 3	17	323	323	
Bin 2	42	796	1119	-
Bin 1	41	777	1896	
Asphalt		104		104
Total	100	2000	1896	104

QA of HMA

- تصاعد دخان ازرق أو اسود من السيارة او الفنشر (زيادة تسخين الخلطة)
 - خلطة مجمدة وعدم انتظام تغطية الحبيبات (زيادة برودة الخلطة)
 - سطح غير هرمي ومستوي تقريبا (زيادة الأسفات)
 - اختفاء اللمعان وعدم انتظام تغطية الحبيبات (نقص الاسفلت)
- بقع ضعيفة جافة ذات لون بني (عدم انتظام الخلطة أو زيادة المواد الناعمة)
 - عدم سهولة التشغيل والمظهر الخشن على الطريق (زيادة المواد الصلبة)

Placement of Hot Mix Asphalt

Dr. Ashraf El_Shahat FAE_ZUN 2011

HMA Transfers

HMA Placement

FAE ZUN

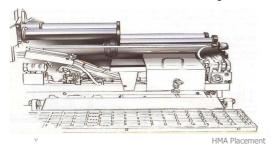
HMA Transfers

- مركبات نقل الخلطة (Trucks) لها عدة احجام وتحتوي على قاعدة حديدية يسهل تنظيفها من المواد الغريبة والخلطة الاسفلتية.
- تغطي قاعدة المركبات بمادة تمنع لصق الخلطة بها (مثل التيفال) ويجب الا يتم العزل بمواد بيتومينية او ديزل لتأثير ها السلبي على الخلطة.
 - يراعى ان يكون التفريغ ببطء حتى لا يحدث انفصال حبيبي للخلطة.
 - يعتمد عدد مركبات النقل على: قدرة انتاج المحطة، مسافة النقل، حجم المرور على محاور الحركة، وزمن التحميل والتفريغ.

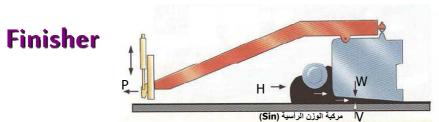
HMA Placement

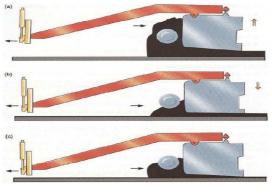
HMA Placement

Finisher



Finisher

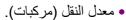



المكونات

- المقدمة: يتم تفريغ الخلطة فيها.
- الناقل: نقل الخلطة من الأمام للخلف
- القادوس: الاحتفاظ المؤقت بالخلطة.
- المكواة: لفرش الخلطة بالعرض والسمك المطلوب

FAE ZUN


يتم التحكم في سمك طبقة الإسفلت قبل الدمك: بتحريك المندالة (المكواة) عند المفصل لأعلى ولأسفل حسب السمك المطلوب أو بتغيير زاوية ميل المندالة نفسها. وتحقق المندالة نسبة ٧٠ – ٨٠% من نسبة الدمك المطلوبة


FAE ZUN

HMA Placement

Quality Control of HMA Placement

تعتمد جودة الفرش على الموائمة والتوازن بين العناصر الثلاثة التالية:

FAE_ZUN

QC of HMA Placement

Placement Continuity

من الضروري لضبط جودة فرش الخلطات الإسفلتية أن يتم المحافظة على استمرارية فرش الخلطات الإسفلتية بحيث لا يتوقف الفنشر أثناء الفرش والتي من أسباب توقفه الآتي:-

- زيادة معدل الفرش عن معدل الإنتاج
- زبادة معدل الفرش عن معدل النقل

لذلك كان من الضروري أن تكون سرعة الفنشر موازنة لمعدل الإنتاج والنقل

HMA Placement

FAE ZUN

Placement Continuity

سرعة الفنشر المناسبة لإنتاج الخلاطة

من الضروري أن تكون سرعة الفنشر موازنة لمعدل الإنتاج والنقل للخلطات الإسفلتية من خلال تطبيق المعادلة التالية:

سرعة الفنشر = رقم السرعة ÷ (عرض الفنشر× سمك الطبقة)

	رقم السرعة لخلاطه ذات إنتاج (طن/ساعة)							كثافة		
٥	۲	10.	17.	1	٩.	۸.	٧.	٦.	٥.	الخلطة (طن/م٣)
٤١٦.٧٠	177.70	178.90	99.97	۸۳.۳۰	78.97	٦٦.٦٤	٥٨.٣١	٤٩.٩٨	٤١.٦٥	۲
٣٩٦.٨٠	۱٥٨.٧٠	119.1.	90.71	٧٩.٤٠	٧١.٤٦	77.07	۸٥.٥٨	٤٧.٦٤	٣٩.٧٠	۲.۱
٣٧٨.٨٠	101.0.	117.7.	9 97	٧٥.٨٠	۲۲.۸۶	٦٠.٦٤	٥٣.٠٦	٤٥.٤٨	۳۷.۹ ۰	7.7
٣٦٢.٣٠	188.9.	۱۰۸.۷٥	۸٧	٧٢.٥.	٦٥.٢٥	٥٨	0100	٤٣.٥.	77.70	۲.۳
۳٤٧.٢.	۱۳۸.۹ ۰	1.2.1.	۸۳.۲۸	٦٩.٤٠	٦٢.٤٦	00.07	٤٥.٥٨	٤١.٦٤	٣٤.٧٠	۲.٤

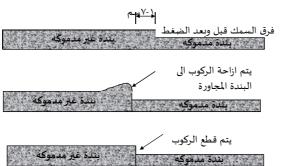
HMA Placement FAE_ZuN

Example

مطلوب حساب سرعة الفنشر لموازنة إنتاج خلطة ٢٠٠ طن/س لكثافة مضغوطة ٢٠٣ طن/م٣، لعرض الفرش ٣٠٦٥م، وسمك الطبقة بعد الدمك ٦سم.

سرعة الفنشر = رقم السرعة \div (عرض الفنشر× سمك الطبقة) = $1.77 \times 1.77 = 7.77$

HMA Placement FAE_ZuÑ


Placement Temperature

درجة الحرارة الصغرى المقترحة لفرش خلطة الإسفلت

	سمك الطبقة المرصوفة (سم)							درجة حرارة الطبقة التي سيتم
١،<	٩	٧.٥	0	٤	۲.٥	۲	1	الفرش عليها
١٢٧	١٣٢	۱۳۸	127	-	-	-	-	o — ·
١٢٤	179	100	121	1 £ 9	-	-	-	10
١٢٤	١٢٧	١٣٢	١٣٨	١٤٦	1 2 9	-	-	10-1.
171	178	179	180	181	128	1 2 9	-	Y. — 10
171	178	179	١٣٢	١٣٨	181	128	189	YY - Y .
171	171	۱۲۷	179	١٣٢	100	١٣٨	157	TY - YY
171	171	178	177	179	١٣٢	170	۱۳۸	٣٢<
10	10	10	10	۱۲	٨	٦	٤	من بدء الفرش حتى نهاية الدمك

HMA Placement FAE_ZUN

اللحامات الطولية

اللحامات العرضية

مراجعة السمك

يجب ألا تقل الكثافة بعد الدمك عن ٩٥% من كثافة مارشال النظرية. ويمكن حساب وزن الخلطة المطلوب فرشها لوحدة المساحات للطبقة ب كجم/م٢ حسب المعادلة:

الوزن (كجم/م٢) = الكثافة المطلوبة (كجم/م٣)× سمك الطبقة (سم)/١٠٠

ويجب في البداية ان يتم انزال لوح المكواه على بلوكات لها سمك الخلطة قبل الضغط وضبط ذراع التحكم لهذا الارتفاع. وفي حالة تكملة فرش سابق يتم وضع الواح بالفرق بين السمك قبل وبعد الضغط.

الوزن المفروش بالطن / م٢.....

HMA Placement

FAE_ZUN

مراجعة السمك

يتم مراجعة السمك الغير مضغوط بإحدى طريقتين:-

١. بدلالة السمك المضغوط ٢. بدلالة وزن وحدة المساحات

الطريقة الأولى: بدلالة السمك المضغوط

- السمك المضغوط المطلوب بالمواصفات = ٦ سم
- متوسط السمك الغير مضغوط بالقياس = ٧ سم
- متوسط السمك بعد الضغط بالقياس = ٥.٨ سم
 - إذا النسبة = ١.٢١ = ١.٢١
- السمك الغير مضغوط المعدل = ٦ ×١.٢١ = ٧.٥٢ سم

HMA Placement

مراجعة السمك

الطريقة الثانية: بدلالة وزن وحدة المساحات

- إذا كان الوزن المطلوب فرشه لوحدة المساحات = ٨١ كجم /م٢
 - الكمية التي تم فرشها = ١٨ طن
 - المساحة التي تم تغطيتها = ٢٢٥ م٢
 - الوزن لوحدة المساحات = ١٨٠٠٠/٢٢٥ = ٨٠ كجم/م٢
- يجب زيادة السمك الغير مضغوط بنسبة $= [\Lambda \cdot /(\Lambda \cdot \Lambda \cdot)]^* 1.70$

HMA Placement 25/2/2011

مراجعة استواء السطح

يتم ذلك باستخدام قدة طولها ٤ متر على الا يزيد الفرق في منسوي السطح عن ٣ مم. أو ١.٦ م/كم من معدة الخشونة (IRI)

الحسم	المعدة	القدة
لايتم الحسم	< ۲.۱ م/کلم (۲٫۱) ‰	<٦ ملم (١,٥) %
٥٪ من سعر طبقة المنطقة المعيبة	۲۰۱۰۲ م/کلم (۲۰۱۰۲) ‰	٦-١١ ملم (١.٥ -٢.٧٥) ‰
١٥٪ من سعر طبقة المنطقة المعيبة	۲-۲م/کلم (۲-۲) ‰	۱۱-۱۱ ملم (۲.۷۵) ‰
٢٥٪ من سعر طبقة المنطقة المعيبة	٣-٥-٣ م/كلم (٣-٥-٣) ‰	۲۱-۱۲ ملم (٤-٥.٢٥) ‰
علاج للأجزاء المعيبة	< ٣.٥م/كلم (٣.٥) %	< ۲۱ ملم (٥.٢٥) ‰

FAE ZUN

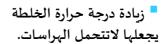
HMA Placement

١٨

Pavement Compaction

HMA Compaction

FAE_ZUN


الغرض من عملية الدمك

- منع الدمك أثناء تشغيل الطريق.
- الخلطة والطبقة لقوى القص (Shear Strength).
 - ويادة مقاومة الطبقة للنفاذية (Waterproofing).
 - زيادة مقاومة الخلطة للأكسدة والتصلد (Oxidation).

HMA Compaction

FAE_ZUN

درجة حرارة الخلطة

 انخفاض درجة حرارة الخلطة يجعل من الصعب دمكها.

HMA Compaction

FAE_ZUN

معدات الدمك

- تقوم مكوة الفنشر بضغط المخلوط الاسفلتي أثناء الفرش الى حوالى ٨٠% من
 الكثافة النهائية، وتعمل الهراسات خلف الفنشر لاكمال الدمك الى الكثافة المطلوبة.
 - ينصح بقطاع تجربي لتحديد التوليفة المناسبة من الهراسات وسرعتها وعدد مرات المرور لتحقيق الكثافة والنعومة النهائية بأكبر كفاءة ممكنة.

هراس استاتیکی

هراس كاوتش



هراس هزاز

هراس هزاز

يعمل الهراس على ثلاث حالات: استاتيكي، اسطوانة اساتيكي والاخري هزاز،هزاز.

يؤثر بقوة ذبذبه بقوة
 لامركزية داخل الاسطوانه

HMA Compaction

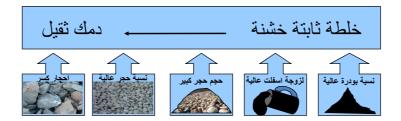
هراس كاوتش

- يستخدم في منتصف عملية
 الدمك بعد الهرسة الاولى (استاتيكي
 او هزاز) وقبل النهائية (الاستاتيكي)
 لعجن الخلطة (Kneading Action).
 - تعتمد قوة الدمك على وزن الهراس وسرعته وضغط الاطارات الكاوتش ونوعها.
 - ضغط اطارات منخفض للدمك الحريص وضغط اطارات مرتفع للدمك الكثيف.

هراس حدید

يتراوح وزن الهراس من ٣١٤ طن وتتأثر طاقة الدمك
بسرعة الهراس والوزن
الخطي (كجم/سم) (وزن
الهراس مقسوماً على
طولها)

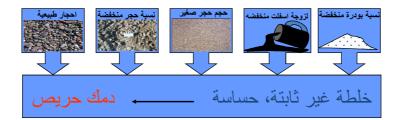
HMA Compaction


FAE_ZUN

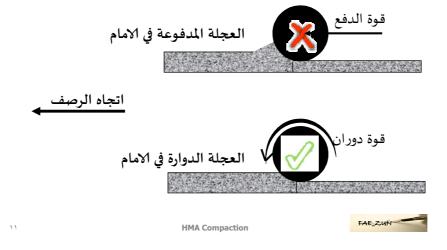
لاحظ أن

- الخلطة الخشنة والتي تحتوي على (نسبة بودرة عالية، لزوجة عالية، حجم كبير للحبيبات، نسبة احجار عالية، احجار كسر) تحتاج الى دمك ثقيل.
 - الخلطة الحساسة والتي تحتوي على (نسبة بودرة منخفضة، لزوجة منخفضة، حجم صغير للحبيبات، نسبة احجار قليلة، احجار طبيعية) تحتاج الى دمك حريص.
 - اتجاه الدمك في اتجاه سير الفنشر

FAE_ZUN


خواص الخلطة والدمك

HMA Compaction


FAE_ZUN

خواص الخلطة والدمك

اتجاه الدمك

يجب ان تكون الاسطوانات الدوارة متقدمة في اتجاه الفرش بالفنشر.

ضبط جودة الدمك

من السهل دمك الخلطة عند درجة الحرارة المناسبة للدمك، وتعتبر طاقة الخلاطة العامل الرئيسي لتحديد عدد ونوع معدات الدمك، وتعتمد جودة الدمك على العناصر التالية نوع الهراس ووزنه.

ويعتبر الهراس الحديدي الهزاز كاف لقدرته على دمك الخلطة الى الكثافة المطلوبة بعدد اقل من مرات المرور ويجب مراعاة الآتي عند الدمك.

- يجب ألا يقل عرض التداخل عن ١٥ سم.
- البدء في فرش الطبقة الثانية من نفس الجانب الذي تم بدء الطبقة الأولى منه
 بعرض يساوي عرض آخر بنده في الطبقة الأولى.

سرعة الدمك

الهرسة النهائية	الهرسة الثانية	البرسة الأولى	السرعة (كم/س)
٥	•	٣	هراس استاتيكي
٨	٥	٥	هراس كاوتش
	0-8	0-2	هراس هزاز

HMA Compaction

عدد مرات المرور

زان مختلفة	للهراس الهزاز باو	سمك الطبقة (بعد	
۱٤ طن	۱۰ طن	۲ طن	الدمك) سم
۲-3 ل	۲-۲ ل	۲-۲ ل/هـ	٧,٥
۲-3 ل	۲-۲ ل	۲-۲ ل/ه	۳.0
٢-٤ ل/هـ	۲-۲ ل/هـ	۲-۲ هـ	٥
٢-٤ ل/هـ	۲-۲ ل/ه	۲-۲ 🗻	٧,٥
۳-۲ هـ	۳-۲ هـ	۳-۸ هـ	١.
۳-۲ هـ	۳-۲ هـ	۳-۸ هـ	١٥
٤-٨ هـ	٤-٨ هـ	٤١٨	٧.
ል ለ- ٤	≥ ∧-€		Yo

ترتيب مراحل الدمك

- اللحامات العرضية
- اللحامات الطولية
- الهرسة الاولى: من اللحام الطولي الى الحافة الخارجية
- الحافة الخارجية : على بعد ٣٠سم من الحافة الخارجية يتم الركوب للهراس تدريجيا بمقدار ١٠سم .
 - الهرسة المتوسطة: من الجانب المنخفض الى الجانب الاعلى
 - الهرسة النهائية.

HMA Compaction

FAE_ZUN

مراقبة جودة الدمك

تستخدم عينات الكور لقياس سمك الطبقة المنفذة وتحديد كثافتها

ونسبة الدمك.

HMA Compaction

FAE_ZUN

حساب نسبة الدمك

تستخدم عينات الكور لقياس سمك الطبقة المنفذة وتحديد كثافتها ونسبة الدمك من خلال الخطوات التالية:-

- ١. الكثافة الحقلية للكور =
- = (وزن القالب في الهواء) / (وزن القالب في الهواء وزن القالب في الماء
 - ٢. نسبة الدمك = الكثافة الحقلية للكور / كثافة من اختبار مارشال
 - ٣. يتم تحديد نسبة الدمك حسب كراسة الشروط حيث لا تقل عن ٩٥%.

Y HMA Compaction

FAE_ZUN

الحمد لله

Questions - ?

١٨

